MODULE ACP_NB
Time-stamp: < 10 Jun 2002 at 14:06:57 by charpov on berlioz.cs.unh.edu >

Non blocking Atomic Commaittment Protocol (ACP-NB)
The non blocking property ACS5 is obtained by using a reliable broadcast
implemented as follows:
- upon reception of a broadcast message, this message is forwarded to all
participants before it’s delivered to the local site;
- since participant ¢ does not forward to itself, forward|[i] is used to
store the decision before it’s delivered (and becomes “decision”)

EXTENDS ACP_SB

Participants type is extended with a “forward” variable.

Coordinator type is unchanged.

TypelnvParticipantNB £ participant € [
participants — |

vote : {yes, no},

alive : BOOLEAN ,

decision : {undecided, commit, abort},

faulty : BOOLEAN

voteSent : BOOLEAN |,

forward : [participants — {notsent, commit, abort}|

]
]

TypelnuNB = TypelnvParticipantNB A TypelnvCoordinator

Initially, participants have not forwarded anything yet

InitParticipantNB = participant € |
participants — |
vote : {yes, no},
alive : {TRUE},
decision : {undecided},
faulty : {FALSE},
voteSent : {FALSE},
forward : [participants — {notsent}]

]
]

InitNB = InitParticipantNB A InitCoordinator

Participant statements that realize a better broadcast

forward(i, j): forwarding of the predecision from participant i to participant j
IF

particpant ¢ is alive

participant ¢ has received a decision (stored in forward[z])

participant ¢ has not yet forwarded this decision to participant j

THEN

participant i forwards the decision to participant j

= Ni#]

A participant|i].alive

A participant[i].forward[i] # notsent

A participant[i].forward[j] = notsent

A participant’ = [participant EXCEPT ![i] =

forward(i, j)

[@ EXCEPT !.forward =
[@ EXCEPT ![j] = participant[i].forward[i]]
]
]
A UNCHANGED (coordinator)

preDecideOnForward(i, j): participant 4 receives decision from participant j
IF
participant ¢ is alive
participant ¢ has yet to receive a decision
participant j has forwarded its decision to participant %
THEN
participant ¢ (pre)decides in accordance with participant j’s decision
Ni#j
A participant[i].alive
A participant[i].forward[i] = notsent

2

preDecideOnForward(i, j)

i
A participant[j].forward[i] # notsent
A participant’ = [participant EXCEPT ![i] =
[@ EXCEPT !.forward =
[@ EXCEPT ![i] = participant[j].forward|i]]
]
]

A UNCHANGED (coordinator)

preDecide(3): participant i receives decision from coordinator
IF
participant ¢ is alive
participant ¢ has yet to receive a decision
coordinator has sent its decision to participant ¢
THEN
participant ¢ (pre)decides in accordance with coordinator’s decision

preDecide(i) = A participant[i].alive
A participant[i].forward[i] = notsent
A coordinator.broadcast[i] # notsent
A participant’ = [participant EXCEPT ![i] =
[@ EXCEPT !.forward =
[@ EXCEPT ![i] = coordinator.broadcast|i]]
]

]

A UNCHANGED (coordinator)

decideNB(%): Actual decision, after predecision has been forwarded
F

participant ¢ is alive

participant ¢ has forwarded its (pre)decision to all other participants
THEN

participant ¢ decides in accordance with it’s predecision

decideNB(i) = A participant[i].alive
AV j € participants : participant[i].forward[j] # notsent
A participant’ = [participant EXCEPT ![i] =
[@ EXCEPT !.decision = participant[i].forward[i]]

]

A UNCHANGED (coordinator)

abortOnTimeout(z): conditions for a timeout are simulated
IF

participant is alive and undecided and coordinator is not alive

coordinator died before sending decision to all participants who are alive

all dead participants died before forwarding decision to a participant who is alive
THEN

decide abort

A

abortOnTimeout(7) A participant[i].alive

A participant[i].decision = undecided

A —coordinator. alive

AV j € participants : participant[j].alive = coordinator.broadcast[j] = notsent

AV j, k € participants : —participant[j].alive A participant[k].alive = participant|[j].forward[k] = notsent
A participant’ = [participant EXCEPT ![i] = [Q EXCEPT l.decision = abort]]

A UNCHANGED (coordinator)

FOR N PARTICIPANTS

parProgNB(i, j) = V sendVote(i)
V abortOnVote ()
V abortOnTimeoutRequest ()
V forward(i, j)
V preDecideOnForward (i, j)
V abortOnTimeout (i)
V preDecide(1)
V decideNB (i)

parProgNNB = 34, j € participants : parDie(i) V parProgNB(i, j)
progNNB = parProgNNB \ coordProgN

fairnessNB = AVi € participants : WEF(coordinator, participant) (3§ € participants : parProgNB (i, j))
A VVF(coordinator7 participant) (COO’FdP’f’OgB)

SpecNB £ InitNB A O[progNNB(coordinator, participant) N fairnessNB

(SOME) INVALID PROPERTIES
AllCommit = i € participants : O(participant|[i].decision = commit \/ participant[i]. faulty)
AllAbort = Yi € participants : O(participant|[i].decision = abort \/ participant[i]. faulty)

AllCommitYesVotes = Vi € participants :
Vj € participants : participant[j].vote = yes
~> participant[i].decision = commit V participant[i].faulty V coordinator.faulty

