
module ACP NB WRONG TLC

Erroneous Non blocking Atomic Committment Protocol (ACP-NB)

The mistake is to deliver a broacast message locally *before* it has been

forwarded to other participants.

This protocol does not satisfy the consistency property AC1

extends ACP SB

Participants type is extended with a “forward” variable.

Coordinator type is unchanged.

TypeInvParticipantNB ∆= participant ∈ [
participants → [

vote : {yes, no},
alive : boolean ,
decision : {undecided , commit , abort},
faulty : boolean ,
voteSent : boolean ,
forward : [participants → {notsent , commit , abort}]

]
]

TypeInvNB ∆= TypeInvParticipantNB ∧ TypeInvCoordinator

Initially, participants have not forwarded anything yet

InitParticipantNB ∆= participant ∈ [
participants → [

vote : {yes, no},
alive : {true},
decision : {undecided},
faulty : {false},
voteSent : {false},
forward : [participants → {notsent}]

]
]

InitNB ∆= InitParticipantNB ∧ InitCoordinator

Participant statements that realize a better broadcast

forward(i , j ): forwarding of the predecision from participant i to participant j

if

particpant i is alive

participant i has received a decision and has decided (it shouldn’t have decided yet)

participant i has not yet forwarded this decision to participant j

then

participant i forwards the decision to participant j

forward(i , j ) ∆= ∧ i 6= j
∧ participant [i ].alive
∧ participant [i ].decision 6= notsent
∧ participant [i ].forward [j ] = notsent
∧ participant ′ = [participant except ![i ] =

[@ except !.forward =
[@ except ![j ] = participant [i ].decision]

]
]

1



∧ unchanged 〈coordinator〉

decideOnForward(i , j ): participant i receives decision from participant j

if

participant i is alive

participant i has yet to receive a decision

participant j has forwarded its decision to participant i

then

participant i decides in accordance with participant j ’s decision (it should only predecide)

decideOnForward(i , j ) ∆= ∧ i 6= j
∧ participant [i ].alive
∧ participant [i ].decision = undecided
∧ participant [j ].forward [i ] 6= notsent
∧ participant ′ = [participant except ![i ] =

[@ except !.decision = participant [j ].forward [i ]]
]

∧ unchanged 〈coordinator〉

abortOnTimeout(i): conditions for a timeout are simulated

if

participant is alive and undecided and coordinator is not alive

coordinator died before sending decision to all participants who are alive

all dead participants died before forwarding decision to a participant who is alive

then

decide abort

abortOnTimeout(i) ∆= ∧ participant [i ].alive
∧ participant [i ].decision = undecided
∧ ¬coordinator .alive
∧ ∀ j ∈ participants : participant [j ].alive ⇒ coordinator .broadcast [j ] = notsent
∧ ∀ j , k ∈ participants : ¬participant [j ].alive ∧ participant [k ].alive ⇒ participant [j ].forward [k ] = notsent
∧ participant ′ = [participant except ![i ] = [@ except !.decision = abort ]]
∧ unchanged 〈coordinator〉

FOR N PARTICIPANTS

parProgNB(i , j ) ∆= ∨ parProg(i)
∨ forward(i , j )
∨ decideOnForward(i , j )
∨ abortOnTimeout(i)

parProgNNB ∆= ∃ i , j ∈ participants : parDie(i) ∨ parProgNB(i , j )

progNNB ∆= parProgNNB ∨ coordProgN

fairnessNB ∆= ∧ ∀ i ∈ participants : WF〈coordinator , participant〉(∃ j ∈ participants : parProgNB(i , j ))
∧WF〈coordinator , participant〉(coordProgB)

SpecNB ∆= InitNB ∧2[progNNB ]〈coordinator , participant〉 ∧ fairnessNB

2


