
module ACP SB
Time-stamp: < 10 Jun 2002 at 12:39:50 by charpov on berlioz .cs.unh.edu >

Atomic Committment Protocol with Simple Broadcast primitive (ACP-SB)

From:

Sape Mullender , editor. Distributed Systems.

Chapter 6: Non-Blocking Atomic Commitment, by Ö. Babaoğlu and S. Toueg.

1993.

Synchronous communication has been replaced with (implicit) asynchronous communication. Failures are detected “magically” instead or relying on

timeouts.

This version of the protocol uses a “simple broadcast” where a broadcast is simply a series of messages sent, possibly interrupted by a failure.
Consequently, this algorithm is “non terminating” and property AC5 does not hold.

constants
participants, set of participants

yes, no, vote

undecided , commit , abort , decision

waiting , coordinator state wrt a participant

notsent broadcast state wrt a participant

variables
participant , participants (N)

coordinator coordinator (1)

TypeInvParticipant ∆= participant ∈ [
participants → [

vote : {yes, no},
alive : boolean ,
decision : {undecided , commit , abort},
faulty : boolean ,
voteSent : boolean

]
]

TypeInvCoordinator ∆= coordinator ∈ [
request : [participants → boolean],
vote : [participants → {waiting , yes, no}],
broadcast : [participants → {commit , abort , notsent}],
decision : {commit , abort , undecided},
alive : boolean ,
faulty : boolean

]

TypeInv ∆= TypeInvParticipant ∧ TypeInvCoordinator

Initially:

All the participants:

have a yes/no vote

are alive and not faulty

have not sent in their votes yet

are undecided about final decision

The coordinator:

has not sent vote requests yet

has not recieved votes from any participant

is alive and not faulty

has not sent broadcast messages to any participant

is undecided about final decision

1

InitParticipant ∆= participant ∈ [
participants → [

vote : {yes, no},
alive : {true},
decision : {undecided},
faulty : {false},
voteSent : {false}

]
]

InitCoordinator ∆= coordinator ∈ [
request : [participants → {false}],
vote : [participants → {waiting}],
alive : {true},
broadcast : [participants → {notsent}],
decision : {undecided},
faulty : {false}

]

Init ∆= InitParticipant ∧ InitCoordinator

COORDINATOR STATEMENTS

request(i):

if

coordinator is alive

request for vote has not been sent to participant i

then

request for vote is sent to participant i

request(i) ∆= ∧ coordinator .alive
∧ ¬coordinator .request [i]
∧ coordinator ′ = [coordinator except !.request =

[@ except ![i] = true]
]

∧ unchanged 〈participant〉

getVote(i):

if

coordinator is alive

coordinator is still undecided

coordinator has sent request for votes to all participants

coordinator is waiting to receive a vote from participant i

participant i has sent the vote message

then

the coordinator can record the vote of participant i

getVote(i) ∆= ∧ coordinator .alive
∧ coordinator .decision = undecided
∧ ∀ j ∈ participants : coordinator .request [j]
∧ coordinator .vote[i] = waiting
∧ participant [i].voteSent
∧ coordinator ′ = [coordinator except !.vote =

[@ except ![i] = participant [i].vote]
]

∧ unchanged 〈participant〉

detectFault(i):

if

coordinator is alive

2

coordinator is still undecided

coordinator has sent request for votes to all participants

coordinator is waiting for vote from participant i

participant i has died without sending its vote

then

coordinator times out on participant i and decides to abort

detectFault(i) ∆= ∧ coordinator .alive
∧ coordinator .decision = undecided
∧ ∀ j ∈ participants : coordinator .request [j]
∧ coordinator .vote[i] = waiting
∧ ¬participant [i].alive
∧ ¬participant [i].voteSent
∧ coordinator ′ = [coordinator except !.decision = abort]
∧ unchanged 〈participant〉

makeDecision:

if

coordinator is alive

coordinator is undecided

coordinator has received votes from all participants

then

if

all votes are yes

then

coordinator decides commit

else

coordinator decides abort

makeDecision ∆= ∧ coordinator .alive
∧ coordinator .decision = undecided
∧ ∀ j ∈ participants : coordinator .vote[j] ∈ {yes, no}
∧ ∨ ∧ ∀ j ∈ participants : coordinator .vote[j] = yes

∧ coordinator ′ = [coordinator except !.decision = commit]
∨ ∧ ∃ j ∈ participants : coordinator .vote[j] = no
∧ coordinator ′ = [coordinator except !.decision = abort]

∧ unchanged 〈participant〉

coordBroadcast(i) (simple broadcast):

if

coordinator is alive

coordinator has made a decision

coordinator has not sent the decision to participant i

then

coordinator sends its decision to participant i

coordBroadcast(i) ∆= ∧ coordinator .alive
∧ coordinator .decision 6= undecided
∧ coordinator .broadcast [i] = notsent
∧ coordinator ′ = [coordinator except !.broadcast =

[@ except ![i] = coordinator .decision]
]

∧ unchanged 〈participant〉

coordDie:

if

coordinator is alive

then

coordinator dies

coordinator is now faulty

3

coordDie ∆= ∧ coordinator .alive
∧ coordinator ′ = [coordinator except !.alive = false, !.faulty = true]
∧ unchanged 〈participant〉

PARTICIPANT STATEMENTS

sendVote(i):

if

participant is alive

participant has received a request for vote

then

participant sends vote

sendVote(i) ∆= ∧ participant [i].alive
∧ coordinator .request [i]
∧ participant ′ = [participant except ![i] =

[@ except !.voteSent = true]
]

∧ unchanged 〈coordinator〉

abortOnVote(i):

if

participant is alive

participant is undecided

participant has sent its vote to the coordinator

participant’s vote is no

then

participant decides (unilaterally) to abort

abortOnVote(i) ∆= ∧ participant [i].alive
∧ participant [i].decision = undecided
∧ participant [i].voteSent
∧ participant [i].vote = no
∧ participant ′ = [participant except ![i] =

[@ except !.decision = abort]
]

∧ unchanged 〈coordinator〉

abortOnTimeoutRequest(i):

if

participant is alive

participant is still undecided

coordinator has died without sending request for vote

then

participant decides (unilaterally) to abort

abortOnTimeoutRequest(i) ∆= ∧ participant [i].alive
∧ participant [i].decision = undecided
∧ ¬coordinator .alive
∧ ¬coordinator .request [i]
∧ participant ′ = [participant except ![i] =

[@ except !.decision = abort]
]

∧ unchanged 〈coordinator〉

decide(i):

if

participant is alive

participant is undecided

4

participant has recieved decision from the coordinator

then

participant decides according to decision from coordinator

decide(i) ∆= ∧ participant [i].alive
∧ participant [i].decision = undecided
∧ coordinator .broadcast [i] 6= notsent
∧ participant ′ = [participant except ![i] =

[@ except !.decision = coordinator .broadcast [i]]
]

∧ unchanged 〈coordinator〉

parDie(i):

if

participant is alive

then

participant dies and is now faulty

parDie(i) ∆= ∧ participant [i].alive
∧ participant ′ = [participant except ![i] =

[@ except !.alive = false, !.faulty = true]
]

∧ unchanged 〈coordinator〉

FOR N PARTICIPANTS

parProg(i) ∆= sendVote(i) ∨ abortOnVote(i) ∨ abortOnTimeoutRequest(i) ∨ decide(i)

parProgN ∆= ∃ i ∈ participants : parDie(i) ∨ parProg(i)

coordProgA(i) ∆= request(i) ∨ getVote(i) ∨ detectFault(i) ∨ coordBroadcast(i)

coordProgB ∆= makeDecision ∨ ∃ i ∈ participants : coordProgA(i)

coordProgN ∆= coordDie ∨ coordProgB

progN ∆= parProgN ∨ coordProgN

Death transitions are left outside of fairness

fairness ∆= ∧ ∀ i ∈ participants : WF〈coordinator , participant〉(parProg(i))
∧WF〈coordinator , participant〉(coordProgB)

Spec ∆= Init ∧2[progN]〈coordinator , participant〉 ∧ fairness

CORRECTNESS SPECIFICATION

This specification follows the original paper, except that AC3 is stronger: It forces participants to abort if one vote at least is NO (in the absence of

failure).

The specification is split between safety and liveness.

SAFETY

All participants that decide reach the same decision

AC1 ∆= 2∀ i , j ∈ participants :
∨ participant [i].decision 6= commit
∨ participant [j].decision 6= abort

5

If any participant decides commit, then all participants must have votes YES

AC2 ∆= 2((∃ i ∈ participants : participant [i].decision = commit)
⇒ (∀ j ∈ participants : participant [j].vote = yes))

If any participant decides abort, then:

at least one participant voted NO, or

at least one participant is faulty, or

coordinator is faulty

AC3 1 ∆= 2((∃ i ∈ participants : participant [i].decision = abort)
⇒ ∨ (∃ j ∈ participants : participant [j].vote = no)

∨ (∃ j ∈ participants : participant [j].faulty)
∨ coordinator .faulty)

Each participant decides at most once

AC4 ∆= 2 ∧ (∀ i ∈ participants : participant [i].decision = commit
⇒ 2(participant [i].decision = commit))

∧ (∀ j ∈ participants : participant [j].decision = abort
⇒ 2(participant [j].decision = abort))

LIVENESS

(stronger for AC3 than in the original paper)

AC3 2 ∆= 3 ∨ ∀ i ∈ participants : participant [i].decision ∈ {abort , commit}
∨ ∃ j ∈ participants : participant [j].faulty
∨ coordinator .faulty

(SOME) INTERMEDIATE PROPERTIES USED IN PROOFS

FaultyStable ∆= ∧ ∀ i ∈ participants : 2(participant [i].faulty ⇒ 2participant [i].faulty)
∧2(coordinator .faulty ⇒ 2coordinator .faulty)

VoteStable ∆= ∀ i ∈ participants :
∨2(participant [i].vote = yes)
∨2(participant [i].vote = no)

StrongerAC2 ∆= 2((∃ i ∈ participants : participant [i].decision = commit)
⇒ ∧ (∀ j ∈ participants : participant [j].vote = yes)

∧ coordinator .decision = commit)

StrongerAC3 1 ∆= 2((∃ i ∈ participants : participant [i].decision = abort)
⇒ ∨ (∃ j ∈ participants : participant [j].vote = no)

∨ ∧ ∃ j ∈ participants : participant [j].faulty
∧ coordinator .decision = abort

∨ ∧ coordinator .faulty
∧ coordinator .decision = undecided)

(AC1 follows from StrongerAC2 ∧ StrongerAC3 1)

NoRecovery ∆= 2 ∧ ∀ i ∈ participants : participant [i].alive ≡ ¬participant [i].faulty
∧ coordinator .alive ≡ ¬coordinator .faulty

(SOME) INVALID PROPERTIES

DecisionReachedNoFault ∆= (∀ i ∈ participants : participant [i].alive)
; (∀ k ∈ participants : participant [k].decision 6= undecided)

AbortImpliesNoVote ∆= 2((∃ i ∈ participants : participant [i].decision = abort)
⇒ (∃ j ∈ participants : participant [j].vote = no))

The following is the termination property that this SB algorithm doesn’t have

6

AC5 ∆= 3∀ i ∈ participants : ∨ participant [i].decision ∈ {abort , commit}
∨ participant [i].faulty

7

