
Verifying TLA+ Invariants with ACL2

Carlos Pacheco?

Department of Computer Sciences,
University of Texas at Austin,

Austin, Texas 78712
pacheco@cs.utexas.edu

Abstract. We describe the use of the ACL2 theorem prover to model
and verify properties of TLA+ specifications. We have written a trans-
lator whose input is a TLA+ specification along with conjectures and
structured proofs of properties of the specification. The translator’s out-
put is an ACL2 model of the specification, and a list of ACL2 conjectures
corresponding to those sections of the proof outlines flagged for mechan-
ical verification. We have used our tools to translate the Disk Synod
algorithm, and to verify two invariants of the algorithm.

1 Introduction

Reasoning in TLA consists largely of reasoning about actions. By most accounts,
90% of all reasoning in TLA+ specifications 1 occurs at the action level, where
temporal logic has been eliminated. Action reasoning alone, for example, is in-
volved in all but the last step of establishing an invariant of a specification.
Consider a system whose starting state satisfies the formula Init , and whose
next-state relation is described by Next . In order to prove an invariant Inv of
the system, two lemmas are established:

1. Init ⇒ Inv
2. Inv ∧Next ⇒ Inv ′

Once we establish these two lemmas, one application of a TLA inference
rule, along with simple temporal reasoning, lets us establish the invariant at the
temporal level (the formula 2Inv). In the Disk Synod algorithm [2], establishing
2Inv from formulas like (1) and (2) above takes up one page, while the creation
of an invariant and its verification at the action level spans 18 pages.

This report summarizes our experiences using a mechanical theorem prover
to verify properties of TLA+ specifications. Our goal is to provide mechanical
support for proving TLA+ invariants at the action level. A system that deals
? This work was supported by an IBM Partnership Award to J Strother Moore, a

UROP grant from the Educational Advancement Foundation, and by Compaq’s
Systems Research Center.

1 TLA is a first-order temporal logic, while TLA+ is a specification language based
on TLA.

effectively with action-level formulas would take us a long way in mechanically
verifying the correctness of specifications.

Our platform of choice for mechanical verification is ACL2 [3]. The ACL2
system is attractive for several reasons. It is among the most automated in
the spectrum of theorem provers, it blends arithmetic decision procedures with
rewriting techniques, and it is a stable and robust system, designed to tackle
industrial-sized verification projects.

There are two main drawbacks to the use of ACL2 for verifying TLA+ speci-
fications. One is that, to make effective use of the prover’s strengths, our TLA+

constructs must be finite. Thus, infinite sets are not allowed in our specifica-
tions. The second drawback to using ACL2 is the different levels of abstraction
at which TLA+ and ACL2 users commonly operate. ACL2 theories are usually
fairly low-level, concrete and computational. On the other hand, TLA+ specifi-
cations tend to be more descriptive than constructive, and make liberal use of
higher-level concepts which are difficult to handle in ACL2’s first-order, essen-
tially quantifier-free logic. For example, in TLA+ we might write the maximal
element of a set of integers as

Max ∆= CHOOSE x ∈ S : ∀ y ∈ S : x ≥ y .

We can faithfully translate Max into ACL2 as follows. First, we define a
function (forall-1 S x) that captures the meaning of the universally quantified
statement ∀ y ∈ S : x ≥ y . Forall-1 goes through every element y in S , checking
whether x ≥ y , and returns t or nil accordingly. Next, we define a function
(filter-1 S) that finds every element m in S such that (forall-1 S m) = t.
Finally, we define Max as follows.
(defun Max (S) (choose (filter-1 S))).

Without the restriction of a faithful translation, we may be inclined to define
the same concept—the maximal element of a set—in ACL2 with a single defini-
tion, say, as (choose-max S), where choose-max is a recursive function that finds
a maximal element in S by gradually working on a larger subset of S . (Ignore
for the moment the representation of sets as ACL2 lists):
(defun choose-max (s)

(cond ((empty s) nil)

((empty (cdr s)) (car s))

((>= (car s)

(choose-max (cdr s)))

(car s))

(t (choose-max (cdr s)))))

Not surprisingly, properties of a maximal element are much easier to derive
in ACL2 under the second representation.

A way to reconcile the conflict between a faithful translation and an effective
translation is to do our proving using what comes naturally in ACL2, and then
relate our “natural” constructs to their corresponding “spec-faithful” versions.
(Notice that “natural” definitions in ACL2 will usually be at a lower-level of

abstraction than their “spec-faithful” counterparts). In our above example, we
could prove a theorem stating the relationship between choose-max and Max.
Then, theorems about choose-max could be transferred to Max under appropri-
ate hypotheses. This solution requires a greater degree of interaction with the
theorem prover, but its lets us use ACL2 effectively and at the same time relates
our work to to the original specification.

A first experiment at the University of Texas at Austin [8] consisted in man-
ually translating the Disk Synod algorithm into ACL2 and verifying two invari-
ants of the algorithm. The next step, performed at Compaq’s Systems Research
Center, was to automate the translation. Our tool not only translates TLA+

specifications, but also structured proofs [4] of conjectures about the specifica-
tions. In writing a structured proof, we mark some reasoning steps as “checked
by ACL2” and leave others unmarked. The translator creates a list of ACL2
defthm forms corresponding to the structured proof, and gives special names to
those corresponding to the “proof by ACL2” steps in the structured proof. We
use ACL2 to verify only such defthm forms. The idea is that, short of mechani-
cally verifying every step of a proof, a user might first want to explore pieces of
a proof that are not entirely clear or where he lacks confidence. Also, we want
to use ACL2 only on those steps where it is appropriate to use ACL2 (low-level,
quantifier-free formulas). A future proof checker for TLA+ might, in addition to
steps labeled “checked by ACL2,” also have steps labeled “checked by X ” where
X is a different theorem prover.

In Section 2 we lay out the translation process from TLA+ to ACL2. Section
3 discusses briefly the framework used to verify properties of translated specifi-
cations, and discusses some aspects of the Disk Synods specification where our
verification effort shed light. Section 4 summarizes what we learned. Appendix A
describes the mechanical translator in more detail.

2 Translation

TLA+ is based in set theory, so we need an effective framework to reason about
sets in ACL2. Our translation scheme builds upon the finite set theory work
developed by Moore [7]; we will assume familiarity with it. (We also assume
familiarity with ACL2 [3] and with TLA+ [5].) Moore’s theory allows us to
express in a natural way basic set concepts like membership, set equality, ordered
pairs, functions and sequences.

We use recursive functions on sets to define several concepts. Quantification
is represented as a recursive function that tests a set’s elements for the desired
property. Set constructors, like {x ∈ S : p(x)} and {f (x) : x ∈ S}, are also
defined as recursive functions that transform or filter elements of a set. Through
the use of ACL2 macros, we provide for a convenient notation to express quan-
tification or set comprehension. For example, the ACL2 macro
(defall name (s) :forall x :in s :holds (p x))

creates a function (name s) that returns t if every element x in s satisfies
(p x), and returns nil otherwise. Examples of other frequently used macros are:

– (defexists name (s) :exists x :in s :such-that (p x)) creates a function
(name s) that returns t if some element x in s has property (p x), and
returns nil otherwise.

– (defmap name (s) :for x :in s :such-that (p x)) creates a function
(name s) that returns the set of elements x in s with property (p x).

– (defmap name (s) :for x :in s :map (f x)) creates a function (name s)

that maps each element x in s into (f x), and returns the set of mapped
elements.

– (defmap-fn name (s) :for x :in s :map (f x)) creates a function (name s)

that maps each element x in s into (f x) and returns the set of ordered
pairs 〈 x , (f x) 〉.

Figure 1 presents our translation scheme for some TLA+ expressions. We
do not provide entries for concepts that translate directly into ACL2’s built-in
definitions (e.g. ∧, ∨, ⇒) or into Moore’s finite set theory definitions (e.g. ∈,
⊆, ∪, ∩). Every set appearing in Figure 1 is assumed to be finite. Note that
the constructs we cannot directly translate deal with quantification over the
(infinite) universe of TLA+ objects.

2.1 Naming Convention

As we mention above, an expression like {x ∈ S : p(x)} is translated using the
defmap macro, which defines a function that constructs the given set. As an ACL2
function, this set constructor needs a name. We name such expressions by con-
catenating the name of the top-level definition in which the expression appears
with forall, exists, subsetof or setofall, depending on the expression.
Finally, we append a number to the name to disambiguate similar expressions
appearing in the same top-level definition. For example, if the TLA+ expression
{x ∈ S : p(x)} is the first “set filtering” expression to occur as part of the
definition of action A, it gets translated into something like (A-subsetof-1 s),
where A-subsetof-1 is defined using the defmap macro:
(defmap A-subsetof-1 (s) :for x :in s :such-that (p x)).

Other TLA+ constructs requiring a name in ACL2 are sets of records and
quantified expressions. Their naming conventions are similar to the above exam-
ple.

2.2 System Variables

We represent TLA+ variables as ACL2 variables. We write the variable x as x,
and the primed variable x ′ as x-n.

In TLA+, state variables are global. TLA+ definitions usually do not pass as
parameters state variables involved in the definitions. Since ACL2 is applicative,
we must include as arguments any variables used, including state variables. For
example, the action Next(a) ∆= x ′ = x + a translates into the ACL2 event
(defun next (a x x-n) (= x-n (+ x a))).

Logic

BOOLEAN (brace t nil)

∀x : p no translation

∃x : p no translation

∀x ∈ S : p (f S v1 . . . vk), where f adheres to the naming convention, and is
defined by
(deftla-forall f (dom v1 . . . vk) :forall x :in dom :holds p).

∃x ∈ S : p (f S v1 . . . vk), where f adheres to the naming convention, and is
defined by
(deftla-exists f (dom v1 . . . vk) :exists x :in dom

:such-that p).

CHOOSE x : p no translation

CHOOSE x ∈ S : p (choose (f S v1 . . . vk)), where f adheres to the naming convention,
and is defined by
(deftla-map f (dom v1 . . . vk) :for x :in dom :such-that p).

Sets

SUBSET S (powerset S)

UNION S (union* S)

Functions

f [e] (apply f e)

DOMAIN f (domain f)

[x ∈ S 7→ e] (f S v1 . . . vk), where f adheres to the naming convention, and is
defined by
(deftla-map-fn f (dom v1 . . . vk) :for x :in dom :map e).

[S → T] (all-fns S T)

[f EXCEPT ![e1] = e2] (except f e1 e2)

Records

[h1 7→ e1, . . . , hn 7→ en] (func (h1 e1) . . . (hn en))

[h1 : S1, . . . , hn : Sn] (name), where name adheres to the naming convention and is defined
by
(defrec name (h1 S1) . . . (hn Sn)).

Fig. 1. TLA–ACL2 translations.

We have created a series of macros that let us define and use state func-
tions and actions without explicit reference to the variables involved. The macro
(defaction next (a) (= x-n (+ x a))) expands into the following events.
(defun next (a x x-n) (= x-n (+ x a)))

(defmacro next (a) (next a x x-n))

Now, we can write (next a) when referring to action Next(a), without writ-
ing down the state variables involved. Similar macros used to hide variable ar-
guments are:

– defstate : for defining state functions with variable hiding. The macro
(defstate name (x1 . . . xn) α) creates in turn two macros, (name x1 . . . xn)

and (name-n x1 . . . xn), referring to the state function in the current and next
state, respectively.

– deftla-exists : same as defexists, with variable hiding.
– deftla-forall : same as defall, with variable hiding.
– deftla-map : same as defmap, with variable hiding.
– deftla-map-fn : same as defmap-fn, with variable hiding.

ACL2 expands away all macro calls in its output, so we will see the system
variables as arguments to functions in ACL2’s output. We have not found it a
major distraction.

3 Proving Conjectures

Disk Synod is a distributed consensus algorithm in which a group of processors
communicate through disks. In the paper introducing Disk Synod [1], Gafni and
Lamport establish six invariance conjectures of Disk Synod. These invariants
are used to prove consistency of the algorithm. Using our tools, we translated
a TLA+ specification of Disk Synod, as well as structured proofs of three of
Gafni and Lamport’s invariants. Of the three structured proofs we translated,
we checked most of the proof steps in two of them with ACL2. We will not
discuss the Disk Synod algorithm or its proof of correctness here; for such a
discussion refer to [1]. The Disk Synod specification, the structured proofs and
their translation can all be found under the src/paxos/ directory (where src/
is the directory where this report is located).

Figures 2 and 3 show the proof outlines for lemmas I 2a and I 2c. These proof
outlines (cast in a special syntax–see Appendix A) are the input to our tool,
which translates them into ACL2 defthm events. In designing the translator, we
want to ensure that someone looking at the structured proof of a conjecture can
tell easily which steps are claimed to be mechanically checked. We also want to
ensure that someone looking at the file of ACL2 defthm events corresponding to
a structured proof can tell easily which events to prove in order to be consistent
with any claims made in the structured proof. It is obvious from looking at the
structured proofs in Figures 2 and 3 which steps are claimed to be mechanically
checked. As for the list of defthm events corresponding to the structured proofs,

our translator appends the suffix “-ACL2” to those events that must be mechan-
ically checked. Other events are named according to their step number in the
structured proof.

We write structured proofs using a special syntax (see Appendix A). We
use the TLA+ front end (in development at SRC) to parse the proof outlines.
However, the front end has no notion of structured proofs; it only parses TLA+

expressions and modules. Using TLA+ syntax that the front end can handle,
we encode structured proofs as TLA+ expressions. After the front end parses
them, we detect them as structured proofs and handle them accordingly. For
more details on how structured proofs are handled and translated into ACL2
defthm events, see Appendix A.

We discuss lemmas I 2a and I 2c and their proofs at length in [8]. Here, we
give some highlights.

In addition to spotting a number of typographic errors in Gafni and Lam-
port’s written proofs, we discovered a nontrivial error in the statement of the-
orem I 2c: an invariant (HInv2) was omitted as a hypothesis. Our proof effort
has yielded a correction to the statement of Lemma I 2c.

Our goal of mechanical verification also forced us to think about subtle and
important details that should be mentioned in the original structured proofs of
Lamport and Gafni. We now discuss two examples.

The next-state action. Disk Synod’s next-state action is existentially quan-
tified on the outside:

Next ∆= ∃ p ∈ Proc : ∨ StartBallot(p)
∨ ∃ d ∈ Disk : ∨ Phase0Read(p, d)

∨ Phase1or2Write(p, d)
∨ ∃ q ∈ Proc p : Phase1or2Read(p, d , q)

∨ EndPhase1or2(p)
∨ Fail(p)
∨ EndPhase0(p)

The next-state action is typically a hypothesis in an invariant conjecture. In
such a proof, we might want to show that every processor in the system has some
property Φ which is preserved across steps. We do this by assuming a constant
process p with property Φ(p), and showing that Φ′(p) holds with respect to the
next-state action. Notice that we have mentioned the variable p twice—once in
the definition of Next above, and once in mentioning a particular processor p for
which Φ holds. However, these two mentions of p are not necessarily mentions
of the same processor.

What does it mean to assume Next? It means that for some processor —call
it p2—Next holds, or intuitively, an action of Next is “executed.” Does it follow
that p2 is the same as the constant p for which Φ(p) holds? Not necessarily. Yet,
in their proof of lemma I 2c, Gafni and Lamport make no distinction between
p2 and p. In our verification effort, we were required to make such distinctions,
and to establish invariants for both cases.

HInv1 ∧HNext ⇒ HInv1′

Assume: 1. constant p ∈ Proc
2. constant q ∈ Proc \ {P}
3. constant d ∈ Disk
4. HInv1
5. ∨ StartBallot(p)

∨ Phase0Read(p, d)
∨ Phase1or2Write(p, d)
∨ Phase1or2Read(p, d, q)
∨ EndPhase1or2(p)
∨ Fail(p)
∨ EndPhase0(p)

6. ChosenAllinputAction
Prove: HInv1′

〈1〉1. case: StartBallot(p)
Assume: 1. constant b ∈ Ballot(p)

2. ∧ b > dblock[p].mbal
∧ dblock′[dblock except ![p].mbal = b]

Prove: HInv1′

Proof: By ACL2.
〈1〉2. case: Phase1or2Write(p,d)

Proof: By ACL2.
〈1〉3. case: Phase1or2Read(p,d,q)

Proof: By ACL2.
〈1〉4. case: Phase0Read(p,d)

Proof: By ACL2.
〈1〉5. case: Fail(p)

Proof: By ACL2.
〈1〉6. case: EndPhase0(p)

Assume: 1. constant b ∈ Ballot(p)
2. ∧ ∀ r ∈ allBlocksRead(P) : B > r.mbal
∧ dblock′ = [dblock except ![P] = [r except !.mbal = B]]〉

Prove: HInv1′

Proof: By ACL2.
〈1〉7. case: EndPhase1or2(p)

Proof: By ACL2.
〈1〉8. Q.E.D.

Proof: Cases are exhaustive.

Fig. 2. Lemma I2a.

HInv1 ∧HInv2 ∧HInv3 ∧HNext ⇒ HInv3′

Assume: 1. constants p, p2 ∈ Proc
2. constant q ∈ Proc
3. constant q2 ∈ Proc \ {P}
4. constants d , d2 ∈ Disk
5. HInv1 ∧HInv2 ∧HInv3
6. ∨ StartBallot(p2)Phase0Read(p2, d2)

∨ Phase1or2Write(p2, d2)Phase1or2Read(p2, d2, q2)
∨ EndPhase1or2(p2)Fail(p2)EndPhase0(p2)

7. ChosenAllinputAction
8. phase ′[p] ∈ 1, 2 ∧ phase ′[q] ∈ 1, 2 ∧ hasRead(p, d , q)′ ∧ hasRead(q , d , p)′

Prove: ∨ [block 7→ dblock′[q], proc 7→ q] ∈ blocksRead′[p][d]
∨ [block 7→ dblock′[p], proc 7→ p] ∈ blocksRead′[q][d]

〈1〉1. case: StartBallot(p)
Assume: 1. constant b ∈ Ballot(p)

2. ∧ b > dblock[p].mbal
∧ dblock′[dblock except ![p].mbal = b]

Prove: ∨ [block 7→ dblock′[q], proc 7→ q] ∈ blocksRead′[p][d]
∨ [block 7→ dblock′[p], proc 7→ p] ∈ blocksRead′[q][d]

Proof: By ACL2.
〈1〉2. case: Phase1or2Write(p,d)

Proof: By ACL2.
〈1〉3. case: Phase1or2Read(p,d,q)
〈2〉1. case: d2 6= d

Proof: By ACL2.
〈2〉2. case: d2 = d
〈3〉1. case: p2 6= p ∧p2 6= q

Proof: By ACL2.
〈3〉2. case: p2 = p
〈4〉1. case: q26=q

Proof: By ACL2.
〈4〉2. case: q2=q

Proof: By ACL2.
〈4〉3. Q.E.D.

Proof: Cases 〈4〉1 and 〈4〉2 are exhaustive.
〈3〉3. case: p2=q
〈4〉1. case: q26=q

Proof: By ACL2.
〈4〉2. case: q2=q

Proof: By ACL2.
〈4〉3. Q.E.D.

Proof: Cases 〈4〉1 and 〈4〉2 are exhaustive.
〈3〉4. Q.E.D.

Proof: Cases 〈3〉1, 〈3〉2 and 〈3〉3 are exhaustive.
〈2〉3. Q.E.D.

Proof: Cases 〈2〉1 and 〈2〉2 are exhaustive.
〈1〉4. case: Phase0Read(p,d)

Proof: By ACL2.
〈1〉5. case: Fail(p)

Proof: By ACL2.
〈1〉6. case: EndPhase0(p)

Proof: By ACL2.
〈1〉7. case: EndPhase1or2(p)

Proof: By ACL2.
〈1〉8. Q.E.D.

Proof: Cases are exhaustive.

Fig. 3. Lemma I2c.

An unmentioned invariant. For our verification to succeed, we had to
establish an unmentioned invariant of Disk Synod, which we call the well-behaved
invariant. In Disk Synod, if every processor has a local copy of a variable named
x , the set of these local variables is modeled as one shared variable x , which is
a function mapping each processor p to its corresponding value x [p]. The well-
behaved invariant says that when a processor p changes the value of a shared
variable like x , it changes only its own slot in the variable. Figure 4 shows the
well-behaved invariant. This invariant is crucial in checking most steps of Lemma
I 2c.

HNext(p2) ∧ (p2 6= p) ⇒ ∨ input ′[p] = input [p]
∨ output ′[p] = output [p]
∨ disk ′[p] = disk [p]
∨ phase ′[p] = phase[p]
∨ dblock ′[p] = dblock [p]
∨ diskswritten ′[p] = diskswritten[p]
∨ blocksread ′[p] = blocksread [p]

Fig. 4. The “well-behaved” invariant.

4 Conclusion

An important lesson we learned is perhaps an obvious one: use a tool only where
its strengths will shine. ACL2 is a general-purpose theorem prover, and one can
use it to verify every step of a proof in any mathematical domain, from real
analysis to circuit design. In our first experiments, we used ACL2 to verify every
step in the proofs of I 2a and I 2c. More than half our time was spent trying to
reason about simple steps in higher-level concepts like quantification. Our second
approach was to use ACL2 only where it might be suitable—closer to the leaves
of a proof, where quantification has been eliminated and all that remains are
large but low-level formulas. Although low-level, these formulas are nontrivial
and would be a challenge for any theorem prover. Moreover, it is most often
in these elaborate steps where errors are uncovered. It is to ACL2’s credit that
it did so much work with little guidance. At the correct level of abstraction,
the prover not only helped us verify statements, but it also pointed the way to
omissions and errors with remarkable precision.

In further work, we would continue focusing ACL2’s attention on low-level
segments of TLA+ proofs, refining our tools and lemma libraries to increase the
prover’s power in this restricted domain. For the remaining high-level steps of
TLA+ proofs, we might recruit a different theorem prover with a logic more
expressive than ACL2’s. The framework for structured proofs we have followed
allows for collaboration among multiple provers—each with its own strengths—
in attacking a verification project.

5 Acknowledgments

I would like to thank J Moore, Leslie Lamport and Yuan Yu for all their help.

References

1. Eli Gafni and Leslie Lamport. Disk Synod. Technical Report 163, Compaq Systems
Research Center, July 2000.

2. Eli Gafni and Leslie Lamport. Disk Paxos. in Maurice Herlihy, editor, Distributed
Computing: 14th International Conference, DISC 2000 Lecture Notes in Computer
Science number 1914, pages 330-344, Springer-Verlag, 2000.

3. Matt Kaufmann, Panagiotis Manolios, and J Strother Moore, Computer-Aided
Reasoning: An Approach, Kluwer Academic Publishers, 2000.

4. Leslie Lamport. How to Write a Proof. American Mathematical Monthly 102, 7
(August-September 1993) pages 600-608.

5. Leslie Lamport. Specifying Concurrent Systems with TLA+. In M. Broy and R.
Steinbrüggen, editors, Calculational System Design.

6. Leslie Lamport. The Temporal Logic of Actions. ACM Transactions on Program-
ming Languages and Systems, 16(3):872-923, May 1994.

7. J Moore. Finite Set Theory in ACL2. TPHOLS ’01, Edinburgh, September 2001.

8. Carlos Pacheco. Reasoning about TLA Actions. Undergraduate Honors Thesis.
Technical Report TR01-16, Department of Computer Sciences, The University of
Texas at Austin, May 2001.

A The Mechanical Translator

This appendix describes the mechanical translator in more detail. Our starting
point is the TLA+ Java front end developed at SRC. The front end takes as
input a TLA+ module, parses it, performs some semantic analysis, and returns
a set of semantic trees corresponding to the TLA+ definitions and declarations
appearing in the given module.

Starting with the semantic trees generated by the Java front end, the trans-
lation into ACL2 proceeds in two stages.

A.1 Stage 1: Generating S-expressions

The first part of our translation tool is a program written in Java, pass-one,
that is responsible for calling the front end on a TLA+ file specified by the
user. If the front end successfully processes the file, pass-one creates a new file,
intermediate.lisp, which contains basically the same semantic trees generated by
the front end, encoded as s-expressions. We now describe the encoding process.
Assume a semantic tree S . In what follows, we identify S with the TLA+ ex-
pression it represents, so instead of saying that S is a semantic node of type
StringKind that represents the string str , we say that S is the string str .

– If S is a CONSTANT declaration of a constant C with n arguments, it is
encoded as the s-expression (C n). Pass-one actually obtains all constant
declarations at the same time from the front end, encodes them as described
above, and wraps them into the following s-expression:
(tla-constants (C1 n1) ... (Ck nk))

– If S is an ASSUME declaration, it is not translated or appended to the list
of s-expressions. (This has nothing to do with our ability to process these
declarations. A more developed translator would handle ASSUME declara-
tions.)

– If S is the number n, it is encoded as n.
– If S is the string s, it is encoded as "s ".
– If S is a definition f (x 1, . . . , xn) ∆= exp, it is encoded as

(definition (line col) level f (x1 . . . xn) exp2)

where line and col are the line and column numbers where f ’s definition ap-
pears in the source TLA+ file, level equals constant-level, variable-level

or action-level, depending on the level of exp (deduced by the front end),
and exp2 is the encoding of exp.

– If S has the form
let def 1

∆= exp1

. . .

def n
∆= expn

in exp

,

it is encoded as (let-in (deflist) exp2), where deflist is the list obtained by
encoding definitions def 1 through def n , and exp2 is the encoding of expres-
sion exp.

– If S is the set of records [h1 : S 1, . . . , hn : Sn], it is encoded as
(set-of-records (line col) (h1 S1) . . . (hn Sn)).

NOTE: For successful translation into ACL2, a set of records must be a
constant expression—it must not be defined in terms of any variables.

– The following constructs are encoded as (set-comp type (line col) ((x1 S1)

. . . (xn Sn)) α), where type corresponds to the kind of expression as follows.
{x 1 ∈ S 1 : α} (type = subsetof)
{α : x 1 ∈ S 1} (type = setofall)
∀ x 1 ∈ S 1, . . . , xn ∈ Sn : α (type = forall)
∃ x 1 ∈ S 1, . . . , xn ∈ Sn : α (type = exists)
CHOOSE x ∈ S : α (type = boundedchoose)
[x 1 ∈ S 1 7→ α] (type = function)

– If S is the unprimed variable x , it is encoded as x .
– If S is the primed variable x ′, it is encoded as x -n.
– If S is f (x 1, . . . , xn)′ for some user-defined operator f , it is encoded as (f -n x1

. . . xn). NOTE: This encoding makes sense for user-defined state functions,
because for state functions, we will ultimately create two ACL2 function
calls, f and f -n, denoting f in its current and next state. The encoding
makes no sense for other primed expressions, like (x + y)′. We assume that
only user-defined state functions or variables are primed in the specification.
This limits the TLA+ expressions we can translate.

– Any other operator application f (x 1, . . . , xn) is encoded as (f2 x1 . . . xn),
where f 2 equals f for user-defined operators, but may differ from f for other
operator names like in, which is replaced by mem, the ACL2 set membership
function name.

NOTES:

– We do not add definitions of operators already built into ACL2, such as
boolean operators or set theory operators.

– There is no support for primed expressions other than the ones outlined
above; other primed expressions will be translated incorrectly.

– We do not expect to encounter unbound expressions like ∀ x : p. If we do
encounter them, the translation will continue, but the final translation will
fail to be admitted by ACL2 (it’s easy to see why it fails because in place of
the unbounded expression, an error message is inserted.)

A.2 Stage 2: Generating ACL2 Events

We now describe pass-two, the program that translates the file intermediate.lisp
into a file of ACL2 events 2. This program is written in ACL2 itself, a subset of
Common LISP.

For an input TLA+ file spec.tla, pass-two creates two files, spec.lisp and spec-
constants.lisp. The file spec-constants.lisp contains a list of ACL2 constants (not
to be confused with TLA+ constants) helpful to the developer of the TLA-
ACL2 system. For instance, the constant *all-defs* is a listing of the contents
in intermediate.lisp. Since this constant will be loaded into the system along with
a specification, the intermediate translation will be available, and macros can be
developed that use *all-defs* to look for information about the specification.
Other constants defined in spec-constants.lisp are *final-defs*, a list of all the
final events generated, and *variables*, a list of the system variables.

The file spec.lisp is the most important file created in the translation process.
It contains the ACL2 events corresponding to the translation.

Up to this point, we have just taken a list of semantic trees stored as Java
data structures, and converted them into s-expressions. Now, we detail how these
s-expressions are translated into ACL2 events.

For each (non-theorem) definition, pass-two calls the function Translate. For
each theorem, it calls the function CreateThms.

How Translate Works Translate’s job is to take an s-expression generated
by pass-one, and produce an ACL2 event, or list of events, corresponding to the
expression. It works as follows. (Our description is intuitive, and not meant to
be formal. For more details, read the commented code.)
2 An ACL2 event is a form submitted at the ACL2 prompt that causes ACL2 to take

some action, like define a new function or prove a theorem.

– The expression (tla-constants (C1 n1) ... (Ck nk)) becomes the list of
events
(defstub C 1 (x1 . . . xn1) t)

...

(defstub C k (x1 . . . xnk) t)

– The expression (tla-variables (v1 . . . vn)) becomes the event
(defconst *variables* ’(v1 . . . vn)).

– The expression
(definition (line col) level f (x1 . . . xn) expr)

can occur in two contexts: as a top-level definition, or as a definition in a
LET-IN form. Both instances are handled the same way. The following ACL2
event is created:
(event f (x1 . . . xn) body)

where event is deftla-fun, defstate, or defaction, depending on level be-
ing constant-level, variable-level, or action-level (respectively), and
body is the result of calling Translate on expr .

– The expression (set-of-records (line col) (h1 S1) . . . (hn Sn)) becomes the
ACL2 event
(defrec name (h1 S1) . . . (hn Sn))

where name is obtained by concatenating the identifiers h1 . . . hn . The oc-
currence of the set of records within an expression is replaced by the function
call (name).

– The expression (set-comp type (line col) ((x1 S1) . . . (xn Sn)) α) is trans-
lated as follows.

1. If n = 1 (there is only one bound pair (x1 S1)), then
• (set-comp setofall (line col) ((x1 S1)) α) becomes

(deftla-map name (dom a1 . . . an) :for x1 :in dom :map α2)

• (set-comp subsetof (line col) ((x1 S1)) α) becomes
(deftla-map name (dom a1 . . . an) :for x1 :in dom :such-that α2)

• (set-comp function (line col) ((x1 S1)) α) becomes
(deftla-map-fn name (dom a1 . . . an) :for x1 :in dom :map α2)

• (set-comp exists (line col) ((x1 S1)) α) becomes
(deftla-exists name (dom a1 . . . an) :exists x1 :in dom

:such-that α2)

• (set-comp forall (line col) ((x1 S1)) α) becomes
(deftla-forall name (dom a1 . . . an) :forall x1 :in dom

:holds α2)

Where
• a1 . . . an are the context parameters appearing in α. We illustrate the

meaning of context parameters with an example: given the TLA+ def-
inition f (a, b, c) ∆= a ∈ {x ∈ b : x = c}, the context parameters
of the expression {x ∈ b : x = c} are b and c.

• α2 is the translation of α.
• name is determined by the naming convention (see Section 2).

The occurrence of the quantified expression is replaced by the call (name

S1 a1 . . . an).
2. if n > 1 (there are several bound pairs (xi Si)), we first translate the

expression
exp2 =(set-comp type (line col) ((x2 S2) . . . (xn Sn)) α), and then we
translate the expression (set-comp type (line col) ((x1 S1)) α2), where
α2 is a call of the function resulting from exp2.

– Any other expression translates into itself.

How CreateThms Works Ideally, the front end would be able to parse struc-
tured proofs. Since it does not, we have developed an ad-hoc encoding for proofs,
using expressions (such as tuples and sets of records) that the front end handles.
This way, we can write proofs inside a module, and have them parsed by the
front end. To the front end (and to pass-one) proofs are just TLA+ expressions;
they aren’t handled in any special way. It is during the second stage of trans-
lation that we recognize proofs and generate the appropriate ACL2 events for
them.

We define proofs and assertions in a mutually recursive fashion.

Proof. The proof of a statement P is a sequence of steps:

[step1 : Assertion1,
. . .
stepn : Assertionn,
stepn+1 : QEDStep]

Where

– stepi is a record field identifier of the form s i j , where i and j are integers
denoting level and step numbers of the proof (see [4]).

– Assertioni is an assertion as defined below.
– QEDStep is a string containing an explanation of the proof of P. The string

must begin with “Q.E.D.”. Examples are “Q.E.D. By propositional logic”
or “Q.E.D. ACL2”. The latter example is important — this is how we let
the translator know that a proof is expected to be mechanically checked by
ACL2.

Writing a QEDStep where a level-i proof is expected is shorthand for

[step i 1 : QEDStep].

Assertion. An assertion can have two forms:

– [assume : Assumptions, prove : Goal, proof : Proof]
– [case : Case, proof : Proof]

Where

– Assumptions can be a single TLA+ expression, a sequence of TLA+ expres-
sions 〈Assm1, . . . , Assmn 〉, or a record [a1 : Assm1, . . . , an : Assmn].
The last option is intended to let the user name assumptions and refer to
them by name at a later stage in a proof, but this functionality has not been
implemented.

– Proof is a proof as defined above.
– Goal is a TLA+ expression, denoting the statement to be proved.
– Case is a TLA+ expression, denoting the case to consider.

NOTE. An assertion [case : Case, proof : Proof] is equivalent to

[assume : Case, prove : P, proof : Proof]

where P is the statement whose proof contains the assertion. To illustrate,
the following two assertions are equivalent.

[assume : << >>, [assume : << >>,

prove : P, prove : P,

proof : proof :

[s_1_1 : [assume : x = 1, [s_1_1 : [case : x = 1,

prove : P, proof : "Q.E.D."],

proof : "Q.E.D."], s_1_2 : [case : x # 1,

s_1_2 : [assume : x # 1, proof : "Q.E.D."]]]

prove : P,

proof : "Q.E.D."]]]

Introducing new identifiers. Sometimes we need to introduce new identifiers
in a proof. For example, when proving (∃ x ∈ S) ⇒ P , we might assume the
existence of a constant c belonging to S , and use c to establish P . We introduce
new names in proofs using the LET-IN construct. In our example, we would write

[assume : << >>,

prove : P,

proof :

LET c == "new"

IN

[s_1_1 : [assume : c \in S,

prove : P,

Proof :]]]

The value "new" assigned to c is only a placeholder—in order for the above
structure to be parsed c needs a definition. In ACL2, we define c to be an
constant with no properties.

Steps that choose a value. A proof step may involve choosing a value with
certain properties from a set. Such a step is accompanied with a proof of the
value’s existence. Here is an example. (For a richer example, see [4] p.7)

< 3 > 1. Choose x ∈ S such that p(x)
PROOF: Let x be 2. Then p(2).

< 3 > 2....

< 3 > 3....

We translate the above example as follows. Notice that we add a step corre-
sponding to the proof obligation arising from our choice of x.

LET x == CHOOSE S

IN

[s_3_1 : p(x),

s_3_2 : ...

s_3_3 : ...]

Generating Theorems. We now describe how a list of ACL2 defthm events
is generated from a structured proof. We start with the s-expression represen-
tation of a structured proof (i.e. a set of records denoting a structured proof).
Second-pass recognizes definitions whose name contains the substring theorem.
In the source TLA+ file, a theorem P looks like this.

TheoremName ==

[assume : << >>,

prove : P,

proof : α

]

For this description, we assume that CreateThms takes three arguments: a
list of assumptions, a goal, and a proof. The top-level call to CreateThms is
CreateThms(nil ,P , α).

Now, consider a general instance CreateThms(assumptions, goal , proof) of a
call to CreateThms.

– If proof is a Q.E.D. step, create the ACL2 event
(defthm name (implies (and assumptions) goal))

where name is the name of theorem, concatenated with the step name, con-
catenated with the string “ -ACL2” if the proof is “Q.E.D. ACL2”.

– Otherwise, proof is a sequence of steps. For each step s in the proof, generate
a list of events as follows.

• If s is of the form
[assume : newAssumptions, prove : newGoal , proof : newProof],
generate a list consisting of the ACL2 events returned by the call
CreateThms(assumptions + newAssumptions,newGoal ,newProof)
and the event
(defthm name (implies (and assumptions) goal)),

where name is the name of the theorem, concatenated with the step
name.

• If s is of the form
[case : newCase, proof : newProof],
generate a list consisting of the ACL2 events returned by the call
CreateThms(newCase + assumptions, goal ,newProof)
and the event
(defthm name (implies (and assumptions) goal)).

where name is the name of the theorem, concatenated with the step
name.

Concatenate all the lists of events resulting from processing the steps, and
return the concatenated list.

