Recursive types for linear/non-linear quantum programming

Vladimir Zamdzhiiev

Université de Lorraine, CNRS, Inria, LORIA, F 54000 Nancy, France

Joint work with Michael Mislove and Bert Lindenhovius

Dagstuhl Seminar on Quantum Programming Languages
17 September 2018
Proto-Quipper-M

- We consider adding recursive types to *Proto-Quipper-M*.
- Original language developed by Francisco Rios and Peter Selinger.
- Language is equipped with formal denotational and operational semantics.
- Primary application is in quantum computing, but the language can describe arbitrary string diagrams.
- In prior work, we described an abstract model of the language and added recursion.
Circuit Model

The language is used to describe *families* of morphisms of an arbitrary small symmetric monoidal category, which we denote \mathcal{M}.

Remark

\mathcal{M} could also be a category of string diagrams which is freely generated.
Example

Shor’s algorithm for integer factorization may be seen as an infinite family of quantum circuits – each circuit is a procedure for factorizing an \(n \)-bit integer, for a fixed \(n \).

\[
\begin{array}{c}
|x_n\rangle \\
|x_{n-1}\rangle \\
\vdots \\
|x_2\rangle \\
|x_1\rangle \\
\end{array}
\begin{array}{c}
\text{QFT}_{n-1} \\
\end{array}
\begin{array}{c}
R_{\pi/2}^{n-1} \\
R_{\pi/2}^{n-2} \\
\vdots \\
R_{\pi/2}^{n/2-1} \\
H \\
\end{array}
\begin{array}{c}
|y_1\rangle \\
|y_2\rangle \\
\vdots \\
|y_{n/2}\rangle \\
|y_{n}\rangle \\
\end{array}
\]

Figure: Quantum Fourier Transform on \(n \) qubits (subroutine in Shor’s algorithm).\(^1\)

\(^1\)Figure source: https://commons.wikimedia.org/w/index.php?curid=14545612
Main difficulty is on the denotational side.

How can we copy/discard intuitionistic recursive types?
- A list of qubits should be *linear* – cannot copy/discard.
- A list of natural numbers should be *intuitionistic* – can implicitly copy/discard.

For the rest of the talk we focus on the linear/non-linear type structure.

How do we design a linear/non-linear FPC?
The Basic (non-recursive) Types

Types

\[A, B ::= \alpha | 0 | A + B | I | A \otimes B | A \rightarrow B | !A | \text{Circ}(T, U) \]

Intuitionistic types

\[P, R ::= 0 | P + R | I | P \otimes R | !A | \text{Circ}(T, U) \]

M-types

\[T, U ::= \alpha | I | T \otimes U \]

Remark

\[\text{Circ}(T, U) \cong ! (T \rightarrow U). \]
Denotational Model

A model of PQM is induced by a Linear/Non-Linear (LNL) model\(^2\):

- A cartesian closed category \(\mathbf{V} \).
- A symmetric monoidal closed category \(\mathbf{C} \).
- A symmetric monoidal adjunction:

\[
\begin{array}{c}
\mathbf{V} \\
\downarrow \\
\mathbf{C}
\end{array}
\]

\[
\begin{array}{c}
\downarrow \quad F \\
\mathbf{V} \\
\downarrow \\
G \\
\mathbf{C}
\end{array}
\]

together with some additional data which is irrelevant for this talk.

Remark

An LNL model is a model of Intuitionistic Linear Logic.

\(^2\)Nick Benton. *A mixed linear and non-linear logic: Proofs, terms and models.* CSL'94
Copying and discarding of intuitionistic types

In PQM, any type A is interpreted as an object $[A] \in C$.

Theorem

For any intuitionistic type P, there exists a canonical isomorphism $\alpha_P : [P] \to F(P)$.

Next, define copy and discard morphisms for each intuitionistic type P:

$$
\Diamond_P := [P] \xrightarrow{\alpha_P} F(P) \xrightarrow{F \langle id, id \rangle} F(P \times P) \xrightarrow{\cong} F(P) \otimes F(P) \xrightarrow{\alpha_P^{-1} \otimes \alpha_P^{-1}} [P] \otimes [P]
$$

$$
\Delta_P := [P] \xrightarrow{\alpha_P} F(P) \xrightarrow{F(id, id)} F(P \times P) \xrightarrow{\cong} F(P) \otimes F(P) \xrightarrow{\alpha_P^{-1} \otimes \alpha_P^{-1}} [P] \otimes [P]
$$
Adding Recursive Types

Type Variables X, Y

Types $A, B ::= X | \alpha | A + B | I | A \otimes B | A \rightarrow B | !A | \text{Circ}(T, U) | \mu X. A$

Intuitionistic types $P, R ::= X | P + R | I | P \otimes R | !A | \text{Circ}(T, U) | \mu X. P$

M-types $T, U ::= \alpha | I | T \otimes U$

Remark

These types are accompanied by some formation rules, which we omit.

Design Choice: Two kinds of type variables – intuitionistic and linear? Or just one kind (like above)?
Some useful recursive types

Example
Nat ≜ \mu X. I + X \quad \text{(intuitionistic)}

Example
List Nat ≜ \mu X. I + X \otimes \text{Nat} \quad \text{(intuitionistic)}

Example
List Qubit ≜ \mu X. I + X \otimes \text{Qubit} \quad \text{(linear)}
Term level recursion

In FPC, a term-level recursion operator may be defined using fold/unfold maps. The same is true for our language.

Theorem

The term-level recursion operator for PQM\(^3\) is now a derived rule. For a given term \(\Phi, z : !A \vdash m : A\), define:

\[
\alpha^z_m \equiv \text{lift fold } \lambda x^1 \mu X.((!X \to !A)) . (\lambda z^1 A . m)(\text{lift (unfold force } x) x)
\]

\[
\text{rec } z^1 A . m \equiv (\text{unfold force } \alpha^z_m) \alpha^z_m
\]

\(^3\)Bert Lindenhovius, Michael Mislove, Vladimir Zamzhiiev: Enriching a Linear/Non-linear Lambda Calculus: A Programming Language for String Diagrams. LICS 2018
A **CPO**-enriched model

1. A **CPO**-symmetric monoidal closed category \mathbf{C} such that \mathbf{C} has finite **CPO**-coproducts.

2. A **CPO**-symmetric monoidal adjunction:

 $\mathbf{CPO} \xrightarrow{F} \mathbf{C}$

3. The category \mathbf{C} is **CPO**$_\perp$-enriched and has ω-colimits.

 together with some additional data which is irrelevant for this talk.

Remark

1. and 3. imply \mathbf{C} has a zero object and we can solve recursive domain equations.
Interpretation of recursive types

Interpreting recursive types amounts to finding initial (final) (co)algebras of certain endofunctors.

Lemma (Adámek)

Let \(C \) be a category with an initial object \(\emptyset \) and let \(T : C \to C \) be an endofunctor. Assume further that the following \(\omega \)-diagram

\[
\emptyset \xrightarrow{\iota} T\emptyset \xrightarrow{T\iota} T^2\emptyset \xrightarrow{T^2\iota} \ldots
\]

has a colimit and \(T \) preserves it. Then, the induced isomorphism is the initial \(T \)-algebra.

Corollary

In a symmetric monoidal closed category with finite coproducts and \(\omega \)-colimits, any endofunctor composed from constants, \(\otimes \) and \(+ \) has an initial algebra.
Embedding-projection pairs

Problem: How do we interpret recursive types which also contain ! and →?

Textbook Solution: CPO-enrichment and embedding-projection pairs.

Definition
Given a CPO-enriched category \mathbf{C}, an embedding-projection pair is a pair of morphisms $e : A \to B$ and $p : B \to A$, such that $p \circ e = \text{id}$ and $e \circ p \leq \text{id}$.

Theorem
If e is an embedding, then it has a unique projection, which we denote e^*.

Definition
The subcategory of \mathbf{C} with the same objects, but whose morphisms are embeddings is denoted \mathbf{C}_e.
Interpretation of recursive types (contd.)

Theorem (Smyth and Plotkin)

If $T : C \to D$ is a CPO-enriched functor and C has ω-colimits, then T preserves ω-colimits of embeddings. In other words, the restriction $T_e : C_e \to D_e$ is ω-continuous.

Theorem

In our categorical model, any CPO-endofunctor $T : C \to C$ has an initial T-algebra, whose inverse is a final T-coalgebra.

Remark

The above theorem follows directly from results in Fiore’s PhD thesis.
Interpretation of types in FPC

Definition
Let $\mathcal{C} := \mathcal{C}^\text{op} \times \mathcal{C}$. An object of \mathcal{C} is called *symmetric* if it is of the form (A, A). The subcategory of symmetric objects and morphisms of the form (e^op, e) is denoted \mathcal{C}_{se}. In FPC, a type with a free type variable $X \vdash A$ is interpreted as a *symmetric* CPO-enriched endofunctor

$$\llbracket X \vdash A \rrbracket : \mathcal{C} \to \mathcal{C}$$

which therefore restricts to an endofunctor

$$\llbracket X \vdash A \rrbracket_{se} : \mathcal{C}_{se} \to \mathcal{C}_{se}.$$

Remark
$\mathcal{C}_{se} \cong \mathcal{C}_e$. Thus, $\llbracket X \vdash A \rrbracket_{se}$ may be seen as an endofunctor on \mathcal{C}_e.
A term $X; \Gamma \vdash m : A$ is interpreted as a *family* of morphisms in \mathbf{C} parameterised by the objects B of \mathbf{C}.

$$\llbracket X; \Gamma \vdash m : A \rrbracket = \{ \Pi_2 \circ \llbracket X \vdash \Gamma \rrbracket (B, B) \xrightarrow{[X; \Gamma \vdash m : A]_B} \Pi_2 \circ \llbracket X \vdash A \rrbracket (B, B) \mid B \in \text{Ob}(\mathbf{C}) \}$$
Recursive types for PQM

Using the data from our categorical model:

\[
\vdash
\]

we may solve all required recursive domain equations and interpret all required type expressions \(\Theta \vdash A \) as functors \([\Theta \vdash A] : \check{C} \rightarrow \check{C}\).

Remark

This follows easily using well-known results from the literature.

Problem: How do we copy/discard the (recursive) intuitionistic types?
Final notations

Definition
Given two CPO-enriched categories \mathbf{C} and \mathbf{D} and a CPO-functor $T : \mathbf{C} \to \mathbf{D}$, a pre-embedding in \mathbf{C} w.r.t T is a morphism $f \in \mathbf{C}$, s.t. Tf is an embedding in \mathbf{D}.

Definition
Let \mathbf{PE} be the subcategory of \mathbf{CPO} with the same objects, but whose morphisms are pre-embeddings w.r.t F in our model.

Example
Every embedding in \mathbf{CPO} is a pre-embedding, but not vice versa. The empty map $\iota : \emptyset \to X$ is a pre-embedding (w.r.t to F in our model), but not an embedding.

Remark
$\Pi_2 : \mathcal{C}_{se} \to \mathcal{C}_e$ is an isomorphism with inverse $D : \mathcal{C}_e \to \mathcal{C}_{se}$ given by

\[
D(A) = (A, A) \\
D(e^\text{op}) = (e^\text{op}, e)
\]
Recall that in PQM with basic types, the basis for copying and discarding is given by the canonical iso (for P intuitionistic):

$$\alpha_P : [P] \overset{\simeq}{\rightarrow} F(P)$$

Problem: How do we generalise this to work with recursive types, where the interpretation of a type is now a functor?
Main conjecture

Conjecture

For any intuitionistic type $\Theta \vdash P$, there exists a natural isomorphism

$$\alpha_{\Theta \vdash P} : \Pi_2 \circ [\Theta \vdash P]_{se} \circ D^{\times n} \circ F^{\times n} \Rightarrow F \circ (\Theta \vdash P)$$

diagrammatically:

\[\begin{array}{c}
\text{PE}^n \xrightarrow{[\Theta \vdash P]} \tilde{C}_{se}^n \xrightarrow{[\Theta \vdash P]_{se}} \tilde{C}_{se}^n \xleftarrow{F^{\times n}} \tilde{C}_e^n \xrightarrow{D^{\times n}} \tilde{C}_{se}^n \\
\text{PE}^n \xrightarrow{(\Theta \vdash P)} \tilde{C}_{se}^n \xleftarrow{F^{\times n}} \tilde{C}_e^n \xrightarrow{D^{\times n}} \tilde{C}_{se}^n \\
\end{array}\]

or equivalently

\[\begin{array}{c}
\text{PE}^n \xrightarrow{[\Theta \vdash P]} \tilde{C}_{se}^n \xrightarrow{[\Theta \vdash P]_{se}} \tilde{C}_{se}^n \xleftarrow{F^{\times n}} \tilde{C}_e^n \xrightarrow{D^{\times n}} \tilde{C}_{se}^n \\
\text{PE}^n \xrightarrow{(\Theta \vdash P)} \tilde{C}_{se}^n \xleftarrow{F^{\times n}} \tilde{C}_e^n \xrightarrow{D^{\times n}} \tilde{C}_{se}^n \\
\end{array}\]
Interpretation of terms in PQM with recursive types

Recall, that in FPC the interpretation of the term $X; \Gamma \vdash m : A$ is parameterised by the objects B of \mathbf{C} (where \mathbf{C} is some Kleisli category or category of partial maps).

$$\llbracket X; \Gamma \vdash m : A \rrbracket = \{ \Pi_2 \circ \llbracket X \vdash \Gamma \rrbracket (B, B) \xrightarrow{\llbracket X; \Gamma \vdash m : A \rrbracket_B} \Pi_2 \circ \llbracket X \vdash A \rrbracket (B, B) \mid B \in \text{Ob}(\mathbf{C}) \}$$

For PQM with recursive types, define

$$\llbracket X; \Gamma \vdash m : A \rrbracket = \{ \Pi_2 \circ \llbracket X \vdash \Gamma \rrbracket (FY, FY) \xrightarrow{\llbracket X; \Gamma \vdash m : A \rrbracket_Y} \Pi_2 \circ \llbracket X \vdash A \rrbracket (FY, FY) \mid Y \in \text{Ob}(\text{CPO}) \}$$

so the interpretation is parameterised by the objects of CPO (which is intuitionistic).
Given a term $X; \Gamma \vdash m : P$ where P is intuitionistic, then:

$$\llbracket X; \Gamma \vdash m : P \rrbracket = \{ \Pi_2 \circ \llbracket X \vdash \Gamma \rrbracket (FY, FY) \xrightarrow{\llbracket X; \Gamma \vdash m : A \rrbracket_Y} \Pi_2 \circ \llbracket X \vdash P \rrbracket (FY, FY) \mid Y \in \text{Ob}(\text{CPO}) \}$$

Observe that

$$\Pi_2 \circ \llbracket X \vdash P \rrbracket (FY, FY) = \Pi_2 \circ \llbracket X \vdash P \rrbracket_{se} \circ D \circ F(Y) \cong F \circ (\Theta \vdash P)(Y)$$

due to the main conjecture. Hence, we may copy or discard the required types / objects.
Let M_* be the free $\text{CPO}_{\bot!}$-enrichment of M and $\overline{M}_* = [M_*^\text{op}, \text{CPO}_{\bot!}]$ be the associated enriched functor category.

Concrete model

![Diagram illustrating the model](image)

Remark

If $M = 1$, then the above model degenerates to the left vertical adjunction, which is a model of FPC.
Future work

- Finish the proofs (conjecture + soundness).
- Investigate computational adequacy.
Future work

- Finish the proofs (conjecture + soundness).
- Investigate computational adequacy.
- Abstract model (i.e. do not assume CPO-enrichment)?
Thank you for your attention!