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String Diagrams

Example
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First introduced by Roger Penrose in 1971 as alternative to the tensor-index notation used in
theoretical physics.
(Typed) nodes connected via (typed) wires
Wires do not have to be connected to nodes at either end
Open-ended wires serve as inputs/outputs
Emphasis on compositionality



String diagram applications
Applications in:

Monoidal category theory (sound and complete categorical reasoning)

Figure: J. Vicary, W. Zeng (2014)

Quantum computation and information (graphical calculi, e.g. ZX-calculus)

Figure: B. Coecke, R. Duncan (2011)



String diagram applications

Concurrency (Petri nets)

Figure: P. Sobocinski (2010)

Computational linguistics (compositional semantics)

Figure: B. Coecke, E. Grefenstette, M. Sadrzadeh (2013)



String diagrams applications

Control theory (signal-flow diagrams)

Figure: J. Baez, J. Erbele (2014)



String Diagram Example

A monoid is a triple (A, ·, 1), such that:

(a · b) · c = a · (b · c) and 1 · a = a = a · 1

We can model this by setting the binary operation to be and the unit to be . Then, the
equations become:

= and = =



String Diagram Example

Equational reasoning is performed by replacing subdiagrams:

Example

=



String Graphs

String diagrams are formally described using (non-discrete) topological notions
This is problematic for computer implementations
Discrete representation exists in the form of String Graphs
String graphs are typed (directed) graphs, such that:

Every vertex is either a node-vertex or a wire-vertex
No edges between node-vertices
In-degree of every wire-vertex is at most one
Out-degree of every wire-vertex is at most one
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Wire-homeomorphism

We consider two string graphs to be equal if they are wire-homeomorphic, that is, we can obtain one from
the other by increasing or decreasing the length of chains of wire-vertices.
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By utilising wire-homeomorphism we can simulate string diagram matching and rewriting.



Reasoning with String Graphs

We use double-pushout (DPO) rewriting on string graphs to represent string diagram rewriting:
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Families of string diagrams

String diagrams (and string graphs) can be used to establish equalities between pairs of objects, one
at a time.
Proving infinitely many equalities simultaneously is only possible using metalogical arguments.

Example

=

However, this is imprecise and implementing software support for it would be very difficult.



!-graphs

A !-graph is a generalised string graph which allows us to represent an infinite family of string graphs
in a formal way.
Marked subgraphs called !-boxes can be repeated any number of times.

Example
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Semantically, a !-graph should be thought of as an infinite set of concrete string graphs, each of
which is obtained after a finite application of two different operations on the !-boxes of the graph.



!-box operations

Applying an EXPAND operation creates a new copy of the subgraph in the !-box which is connected in
the same way to the neighbourhood of the !-box:

7→
EXPAND

Applying a KILL operation removes a !-box and its contents:

7→
KILL



!-graph semantics

Semantically, a !-graph represents the infinite set of concrete string graphs obtained after applying all
possible sequences of !-box operations.
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!-graph expressiveness

Proposition
The language induced by any !-graph is of bounded diameter.

This limits the expressiveness of !-graphs and there are families of string graphs of interest which we
cannot represent using !-graphs.

Example
The following language is not induced by any !-graph:

, , · · ·,,

Because of the limitations in expressiveness, we consider alternative language generating mechanisms and
try to establish the relationship between them.



!-box relationships

A !-graph can have multiple !-boxes. The possible relationships between a pair of !-boxes are the
following:
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Context-free graph grammars

We investigate context-free graph grammars first, as they have better structural, complexity and
decidability properties compared to other more expressive graph grammars.
Most studied context-free graph grammars are:

Hyperedge replacement grammars (HR)
Vertex replacement grammars (VR)

Large body of literature available for both VR and HR grammars
VR grammars (also known as C-edNCE grammars) are more expressive than HR grammars in general

We will be working with VR grammars only, in particular linear VR grammars (LIN-edNCE)



VR grammar example

The following grammar generates the set of all chains of node vertices with an input and no outputs:
S

X X

X X

A derivation in the above grammar of the string graph with three node vertices:

S ⇒ X ⇒ X ⇒ X ⇒

where we color the newly established edges in red.



VR grammars vs !-graphs

Theorem
The language induced by any !-graph with no overlapping !-boxes can be generated by a LIN-edNCE
grammar. Moreover, this grammar can be constructed effectively.

Example
The language induced by the following !-graph:
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can be generated by the following LIN-edNCE grammar:
S

X
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X X



VR grammars vs !-graphs

What happens when we allow overlapping !-boxes?

Proposition
A string graph language L can be generated by a VR grammar iff it can be generated by an HR grammar.

Corollary
The language induced by the following !-graph:
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with (trivially) overlapping !-boxes cannot be directly generated by any VR grammar.

Proof.
Follows from a simple application of the pumping lemma for HR grammars.



VR grammars vs !-graphs

Definition (Wire-encoding)
We say that two graphs H and H ′ are equal up to wire-encoding, if we can get one from the other by
replacing every edge with special label βk by a closed wire with endpoints the source and target of the
original edge.

β1

β2

βm
7→

The decoding in the above definition can be formally achieved using a very simple system of DPO rewrite
rules.



VR grammars vs !-graphs

Theorem
Given a !-graph H such that the only overlap between !-boxes in H is trivial, then there exists a
LIN-edNCE grammar which generates the same language as H, up to wire-encoding. Moreover, this
grammar can be effectively generated.

Example
The language induced by the following !-graph:
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with (trivially) overlapping !-boxes is generated up to wire-encoding by the following LIN-edNCE
grammar:

S
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Conclusion

We have shown the following relationship between !-graphs and LIN-edNCE grammars:

LIN-edNCE BG

BGTO

Moreover, the proofs of the theorems are constructive and translating a !-graph into a LIN-edNCE
grammar can be automated.



Future work

Conjecture
The language induced by any !-graph which contains !-boxes whose overlap is non-trivial cannot be
described by a C-edNCE grammar, even up to wire-encoding.

If the conjecture is true, then the relationship simplifies to:

C-edNCE BG

BGTO



Future work

!-graphs can be used to formally establish infinitely many equalities via !-graph rewrite rules:
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In recent work, we showed that VR grammars can also be used to achieve the same goal:
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Future work will involve combining the two results in the hope of showing that VR grammars can be
used to represent all !-graph rewrite rules


