
Quantum Programming with Inductive Datatypes:
Causality and Affine Type Theory

Vladimir Zamdzhiev

Université de Lorraine, CNRS, Inria, LORIA, F 54000 Nancy, France

Joint work with Romain Péchoux, Simon Perdrix and Mathys Rennela
26.11.2019

0 / 30

Quantum Programming Overview

There are different paradigms:
• Circuit description languages. Focus on generation of circuits. Examples:

• QWIRE (Paykin, Rand, Zdancewic. POPL 2017).
• EWIRE (Rennela, Staton. MFPS 2017).
• Proto-Quipper-M (Rios, Selinger. QPL 2017).
• ECLNL (Lindenhovius, Mislove, Zamdzhiev. LICS 2018).

• Linear-algebraic lambda calculi. Superposition of terms. Examples:
• Lineal (Arrighi, Dowek. LMCS 2017).
• Lambda-S (Díaz-Caro, Malherbe. LSFA 2018).

• Quantum programming languages. Run on quantum hardware. Examples:
• QPL (Selinger. MSCS. (2004)).
• Quantum Lambda Calculus (Pagani, Selinger, Valiron. POPL 2014).

1 / 30

Introduction

• Inductive datatypes are an important programming concept.
• Data structures such as natural numbers, lists, etc.; manipulate variable-sized data.

• First detailed treatment of inductive datatypes for quantum programming.
• Most type systems for quantum programming are linear (copying and discarding

are restricted).
• We show that affine type systems (only copying is restricted) are very appropriate.
• Some of the main challenges in designing a (categorical) model for the language

stem from substructural limitations imposed by quantum mechanics:
• How to identify the causal (i.e. discardable) quantum data?
• How do we copy (infinite-dimensional) classical datatypes?

2 / 30

Overview of Talk

• Extend QPL with inductive datatypes and a copy operation for classical data;
• An affine type system with first-order procedure calls. No !-modality required.
• An elegant and type safe operational semantics based on finite-dimensional

quantum operations and classical control structures;
• A physically natural denotational model for quantum programming using von

Neumann algebras;
• Several novel results in quantum programming:

• Denotational semantics for user-defined inductive datatypes. We also describe the
comonoid structure of classical (inductive) types.

• Invariance of the denotational semantics w.r.t big-step reduction. This implies
adequacy at all types.

3 / 30

Outline : Inductive Datatypes

• Syntactically, everything is very straightforward.
• Operationally, the small-step semantics can be described using finite-dimensional

superoperators together with classical control structures.
• Denotationally, we have to move away from finite-dimensional quantum

computing:
• E.g. the recursive domain equation X ∼= C⊕X cannot be solved in finite dimensions.

• But it can be solved in infinite dimensions: take X =
⊕

ω C.
• Naturally, we use (infinite-dimensional) W*-algebras (aka von Neumann algebras),

which were introduced by von Neumann to aid his study of quantum mechanics.

4 / 30

Outline : Inductive Datatypes

• Syntactically, everything is very straightforward.
• Operationally, the small-step semantics can be described using finite-dimensional

superoperators together with classical control structures.
• Denotationally, we have to move away from finite-dimensional quantum

computing:
• E.g. the recursive domain equation X ∼= C⊕X cannot be solved in finite dimensions.
• But it can be solved in infinite dimensions: take X =

⊕
ω C.

• Naturally, we use (infinite-dimensional) W*-algebras (aka von Neumann algebras),
which were introduced by von Neumann to aid his study of quantum mechanics.

4 / 30

Outline : Inductive Datatypes

• Syntactically, everything is very straightforward.
• Operationally, the small-step semantics can be described using finite-dimensional

superoperators together with classical control structures.
• Denotationally, we have to move away from finite-dimensional quantum

computing:
• E.g. the recursive domain equation X ∼= C⊕X cannot be solved in finite dimensions.
• But it can be solved in infinite dimensions: take X =

⊕
ω C.

• Naturally, we use (infinite-dimensional) W*-algebras (aka von Neumann algebras),
which were introduced by von Neumann to aid his study of quantum mechanics.

4 / 30

Outline : Causality and Linear vs Affine Type Systems

• Linear type system : only non-linear variables may be copied or discarded.
• Affine type system : only non-linear variables may be copied; all variables may be

discarded.
• Syntactically, all types have an elimination rule in quantum programming.
• Operationally, all computational data may be discarded by a mix of partial trace

and classical discarding.
• Denotationally, we can construct discarding maps at all types (quantum and

classical) and prove the interpretation of the values is causal.
• This is achieved by considering different kinds of structure-preserving superoperators.

• The "no deletion" theorem of QM is irrelevant for quantum programming. We
work entirely within W*-algebras, so no violation of QM.

5 / 30

QPL - a Quantum Programming Language

• As a basis for our development, we describe a quantum programming language
based on the language QPL of Selinger (which is also affine).
• The language is equipped with a type system which guarantees no runtime errors

can occur.
• QPL is not a higher-order language: it has procedures, but does not have lambda

abstractions.
• We extend QPL with :

• Inductive datatypes.
• Copy operation on classical types.

6 / 30

Syntax

• The syntax (excerpt) of our language is presented below. The formation rules are
omitted. Notice there is no ! modality.

Type Var. X ,Y ,Z
Term Var. x , q, b, u
Procedure Var. f , g
Types A,B ::= X | I | qbit | A + B | A⊗ B | µX .A
Classical Types P,R ::= X | I | P + R | P ⊗ R | µX .P
Variable contexts Γ,Σ ::= x1 : A1, . . . , xn : An

Procedure cont. Π ::= f1 : A1 → B1, . . . , fn : An → Bn

7 / 30

Some Definable Types

• The type of bits is defined as bit := I + I .
• The type of natural numbers is defined as Nat := µX .I + X .
• The type of lists of qubits is defined as QList = µX .I + qbit⊗ X .

8 / 30

Syntax (contd.)

Terms M,N ::= new unit u | new qbit q | discard x | y = copy x
q1, . . . , qn ∗ = U | M;N | skip |
b = measure q | while b do M |
x = leftA,BM | x = rightA,BM |
case y of {left x1 → M | right x2 → N}
x = (x1, x2) | (x1, x2) = x |
y = fold x | y = unfold x |
proc f x : A→ y : B {M} | y = f (x)

• A term judgement is of the form Π ` 〈Γ〉 P 〈Σ〉, where all types are closed and all
contexts are well-formed. It states that the term is well-formed in procedure
context Π, given input variables 〈Γ〉 and output variables 〈Σ〉.
• A program is a term P , such that · ` 〈·〉 P 〈Γ〉, for some (unique) Γ.

9 / 30

Syntax : qubits

The type of bits is (canonically) defined to be bit := I + I .

(qbit)
Π ` 〈Γ〉 new qbit q 〈Γ, q : qbit〉

(measure)
Π ` 〈Γ, q : qbit〉 b = measure q 〈Γ, b : bit〉

S is a unitary of arity n
(unitary)

Π ` 〈Γ, q1 : qbit, . . . , qn : qbit〉 q1, . . . , qn ∗= S 〈Γ, q1 : qbit, . . . , qn : qbit〉

10 / 30

Syntax : copying

P is a classical type
(copy)

Π ` 〈Γ, x : P〉 y = copy x 〈Γ, x : P, y : P〉

11 / 30

Syntax : discarding (affine vs linear)

• If we wish to have a linear type system:

(discard)
Π ` 〈Γ, x : I 〉 discard x 〈Γ〉

• If we wish to have an affine type system:

(discard)
Π ` 〈Γ, x : A〉 discard x 〈Γ〉

• Since all types have an elimination rule, an affine type system is obviously more
convenient.

12 / 30

Operational Semantics

• Operational semantics is a formal specification which describes how a program is
executed in a mathematically precise way.
• A configuration is a tuple (M,V ,Ω, ρ), where:

• M is a well-formed term Π ` 〈Γ〉 M 〈Σ〉.
• V is a value assignment. Each input variable of M is assigned a value, e.g.

V = {x = zero, y = cons(one, nil)}.
• Ω is a procedure store. It keeps track of the defined procedures by mapping

procedure variables to their procedure bodies (which are terms).
• ρ is the (possibly not normalized) density matrix computed so far.
• This data is subject to additional well-formedness conditions (omitted).

13 / 30

Operational Semantics (contd.)

• Program execution is (formally) modelled as a nondeterministic reduction relation
on configurations (M,V ,Ω, ρ) (M ′,V ′,Ω′, ρ′).

• The reduction relation may equivalently be seen as probabilistic, because the
probability of the reduction is encoded in ρ′.
• The probability of the above reduction is then tr(ρ′)/tr(ρ), which is consistent

with the Born rule of quantum mechanics.
• The only source of probabilistic behaviour is given by quantum measurements.

14 / 30

A simple program and its execution graph

while b do {
new qbit q;
q *= H;
discard b;
b = measure q

}

(M | b = tt | · | 1)

(M | b = tt | · | 0.5)

(M | b = tt | · | 0.25)

∗

∗

(skip | b = ff | · | 0.5)

∗

(skip | b = ff | · | 0.25)

∗

(skip | b = ff | · | 0.125)

∗···

∗

15 / 30

A simple program for GHZn

proc GHZnext(l : ListQ) -> l : ListQ {
new qbit q;
case l of

nil -> q *= H;
l = q :: nil

| q’ :: l’ -> q’,q *= CNOT;
l = q :: q’ :: l’

}

proc GHZ(n : Nat) -> l : ListQ {
case n of

zero -> l = nil
| s(n’) -> l = GHZnext(GHZ(n’))

}

16 / 30

An example execution

(l = GHZnext(l) | l = 2 :: 1 :: nil | Ω | γ2)

(new qbit q; · · · | l = 2 :: 1 :: nil | Ω | γ2)

(case l of · · · | l = 2 :: 1 :: nil, q = 3 | Ω | γ2 ⊗ |0〉 〈0|)
∗

(q’,q *=CNOT; · · · | l’ = 1 :: nil, q = 3, q’ = 2 | Ω | γ2 ⊗ |0〉 〈0|)

(l = q :: q’ :: l’ | l’ = 1 :: nil, q = 3, q’ = 2 | Ω | γ3)
∗

(skip | l = 3 :: 2 :: 1 :: nil | Ω | γ3)

(l = GHZ(n) | n = s(s(s(zero))) | Ω | 1)
∗

17 / 30

The Denotational Model

• Our denotational model is based on W*-algebras (aka von Neumann algebras).
• A W*-algebra is a complex vector space A, equipped with:

• A bilinear multiplication (− · −) : A× A→ A (written as juxtaposition).
• A submultiplicative norm ‖ − ‖ : A→ R≥0, i.e. ∀x , y ∈ A : ‖xy‖ ≤ ‖x‖‖y‖.
• An involution (−)∗ : A→ A such that (x∗)∗ = x , (x + y)∗ = (x∗ + y∗),

(xy)∗ = y∗x∗ and (λx)∗ = λx∗.
• Subject to some additional conditions (omitted here).

• Example: The set of complex numbers C.
• Example: The algebra Mn(C) of n × n complex matrices.

18 / 30

The Denotational Model (contd.)

• We need to consider two kinds of structure-preserving linear maps.
• A linear map f : A→ B is MIU, if it preserves multiplication, involution and the

unit. These maps are known as *-homomorphisms.
• A linear map f : A→ B is CPSU, if it is completely-positive and subunital

(0 ≤ f (1) ≤ 1).
• Every MIU map is also CPSU.
• Values are interpreted as MIU-maps, whereas computations are interpreted as

CPSU-maps.

19 / 30

Categorical Structure of W*-algebras

• Let W∗CPSU be the category of W*-algebras and CPSU-maps.
• Let W∗MIU be the category of W*-algebras and MIU-maps.
• For the denotational semantics, we have to adopt the Heisenberg picture of

quantum mechanics:
• Categorically, this means our interpretations live in the opposite categories.
• Values are interpreted as morphisms in V := (W∗

MIU)op.
• Computations are interpreted as morphisms in C := (W∗

CPSU)op.

• Both C and V are symmetric monoidal and have small coproducts.
• C is also pointed and DCPO⊥!-enriched.
• There exist symmetric monoidal adjunctions

Set V
F

` C
J

`

G R
.

20 / 30

Interpretation of Types

• The category V is also symmetric monoidal closed and cocomplete, which is ideal
for the interpretation of inductive datatypes.
• Inductive datatypes are interpreted by constructing (parameterised) initial algebras

within V.
• Every open type Θ ` A is interpreted as an ω-cocontinuous functor

JΘ ` AK : V|Θ| → V.
• Every closed type A is interpreted as an object JAK ∈ Ob(V) = Ob(C).

21 / 30

Copying of Classical Information

• We do not use linear logic based approaches that rely on a !-modality.
• Instead, we use techniques based on recent work [LMZ19]:

• Abstract categorical models for linear/non-linear recursive types (! and (allowed).
• Implicit copying and discarding for non-linear recursive types (difficult to model

denotationally).
• New methods for solving recursive domain equations.
• New coherence properties for parameterised initial algebras.

• Extended version of [LMZ19] submitted to LMCS (60 pages). arXiv:1906.09503
• The present treatment is actually a simple special case of [LMZ19], because here

we do not use ! or(.

[LMZ19] Bert Lindenhovius, Michael Mislove and Vladimir Zamdzhiev. Mixed Linear and
Non-linear Recursive Types. ICFP’19.

22 / 30

Copying of Classical Information (contd.)

• For every classical type Θ ` P we present a classical interpretation
LΘ ` PM : Set|Θ| → Set which we show satisfies

JΘ ` PK

F×|Θ|

Set V

Set|Θ|

LΘ ` PM

F

V|Θ|

∼=

• For closed types we get an isomorphism F LPM ∼= JPK.
• This isomorphism allows us to define a cocommutative comonoid structure.
• The classical values (including folds) are then comonoid homomorhpisms.

23 / 30

Copying of Classical Information (contd.)

• For every classical type Θ ` P we present a classical interpretation
LΘ ` PM : Set|Θ| → Set which we show satisfies

JΘ ` PK

F×|Θ|

Set V

Set|Θ|

LΘ ` PM

F

V|Θ|

∼=

• For closed types we get an isomorphism F LPM ∼= JPK.

• This isomorphism allows us to define a cocommutative comonoid structure.
• The classical values (including folds) are then comonoid homomorhpisms.

23 / 30

Copying of Classical Information (contd.)

• For every classical type Θ ` P we present a classical interpretation
LΘ ` PM : Set|Θ| → Set which we show satisfies

JΘ ` PK

F×|Θ|

Set V

Set|Θ|

LΘ ` PM

F

V|Θ|

∼=

• For closed types we get an isomorphism F LPM ∼= JPK.
• This isomorphism allows us to define a cocommutative comonoid structure.

• The classical values (including folds) are then comonoid homomorhpisms.

23 / 30

Copying of Classical Information (contd.)

• For every classical type Θ ` P we present a classical interpretation
LΘ ` PM : Set|Θ| → Set which we show satisfies

JΘ ` PK

F×|Θ|

Set V

Set|Θ|

LΘ ` PM

F

V|Θ|

∼=

• For closed types we get an isomorphism F LPM ∼= JPK.
• This isomorphism allows us to define a cocommutative comonoid structure.
• The classical values (including folds) are then comonoid homomorhpisms.

23 / 30

Discarding of (Quantum) Information

• Discardable operations are called causal.
• In V, the tensor unit I is terminal, so the discarding map is �A : A→ I .
• We show that all values are *-homomorphisms and therefore causal.

• This includes folds, because type interpretation is done in V.

24 / 30

Interpretation of Terms and Configurations

• Most of the difficulty is in defining the interpretation of types and the
substructural operations.
• Terms are interpreted as Scott-continuous functions

JΠ ` 〈Γ〉 M 〈Σ〉K : JΠK→ C(JΓK, JΣK).

• Configurations are interpreted as states J(M,V ,Ω, ρ)K : I → JΣK.
• This is fairly straightforward.

25 / 30

Soundness

Theorem (Soundness)
For any non-terminal configuration C, the denotational interpretation is invariant under
(small-step) program execution:

JCK =
∑
C D

JDK

Remark: The above sum is convex.
26 / 30

Invariance w.r.t big-step reduction

• Can the interpretation of a configuration be recovered from the (potentially
infinite) set of its terminal reducts?

Theorem (Big-step invariance)
For any configuration C :

JCK =
∑
C⇓T

T terminal

JT K

• This is a novel result for quantum programming.
• This is a strong result, because it immediately implies computational adequacy.
• Useful for a collecting semantics for quantum (relational) program logics.

27 / 30

Computational Adequacy

• Can we provide a denotational formulation for the probability of termination?

Theorem (Computational Adequacy)
For any normalised configuration C :

(� ◦ JCK) (1) = Halt(C)

28 / 30

Conclusion and Future Work

• We described a natural model based on (infinite-dimensional) W*-algebras.
• Use affine type systems instead of linear ones for quantum programming.
• Novel results for quantum programming:

• Inductive datatypes.
• Invariance of the interpretation w.r.t big-step reduction. This implies computational

adequacy at all types.
• No !-modality:

• Comonoid structure of all classical types using the categorical structure of models of
intuitionistic linear logic.

• Causal (discarding) structure by separating the values and computations into
suitable categories.

• Do lambda abstractions in quantum programming admit a physical interpretation?
• Future work: use the model for abstract interpretation.

29 / 30

Thank you for your attention!

30 / 30

