Quantum Programming with Inductive Datatypes:
Causality and Affine Type Theory

Vladimir Zamdzhiev

Université de Lorraine, CNRS, Inria, LORIA, F 54000 Nancy, France

Joint work with Romain Péchoux, Simon Perdrix and Mathys Rennela
26.11.2019

4 £FYp Universiteit
ho ,’a Leiden

INVENTEURS DU MONDE NUMERIOUE s

UNIVERSITE
DE LORRAINE

0/30

Quantum Programming Overview

There are different paradigms:
e Circuit description languages. Focus on generation of circuits. Examples:
QWIRE (Paykin, Rand, Zdancewic. POPL 2017).
EWIRE (Rennela, Staton. MFPS 2017).
Proto-Quipper-M (Rios, Selinger. QPL 2017).
ECLNL (Lindenhovius, Mislove, Zamdzhiev. LICS 2018).
® Linear-algebraic lambda calculi. Superposition of terms. Examples:
e Lineal (Arrighi, Dowek. LMCS 2017).
® Lambda-S (Diaz-Caro, Malherbe. LSFA 2018).
® Quantum programming languages. Run on quantum hardware. Examples:

® QPL (Selinger. MSCS. (2004)).
® Quantum Lambda Calculus (Pagani, Selinger, Valiron. POPL 2014).

1/30

Introduction

Inductive datatypes are an important programming concept.
® Data structures such as natural numbers, lists, etc.; manipulate variable-sized data.

First detailed treatment of inductive datatypes for quantum programming.

Most type systems for quantum programming are linear (copying and discarding
are restricted).

We show that affine type systems (only copying is restricted) are very appropriate.

Some of the main challenges in designing a (categorical) model for the language
stem from substructural limitations imposed by quantum mechanics:

® How to identify the causal (i.e. discardable) quantum data?
® How do we copy (infinite-dimensional) classical datatypes?

2/30

Overview of Talk

Extend QPL with inductive datatypes and a copy operation for classical data;
An affine type system with first-order procedure calls. No I-modality required.

An elegant and type safe operational semantics based on finite-dimensional
quantum operations and classical control structures;

A physically natural denotational model for quantum programming using von
Neumann algebras;
Several novel results in quantum programming:

® Denotational semantics for user-defined inductive datatypes. We also describe the
comonoid structure of classical (inductive) types.

® |nvariance of the denotational semantics w.r.t big-step reduction. This implies
adequacy at all types.

3/30

Outline : Inductive Datatypes

e Syntactically, everything is very straightforward.
e Operationally, the small-step semantics can be described using finite-dimensional
superoperators together with classical control structures.

® Denotationally, we have to move away from finite-dimensional quantum
computing:
® E.g. the recursive domain equation X = C® X cannot be solved in finite dimensions.

4/30

Outline : Inductive Datatypes

e Syntactically, everything is very straightforward.
e Operationally, the small-step semantics can be described using finite-dimensional
superoperators together with classical control structures.
® Denotationally, we have to move away from finite-dimensional quantum
computing:
® E.g. the recursive domain equation X = C® X cannot be solved in finite dimensions.
® But it can be solved in infinite dimensions: take X = @ C.

4/30

Outline : Inductive Datatypes

Syntactically, everything is very straightforward.
Operationally, the small-step semantics can be described using finite-dimensional
superoperators together with classical control structures.

Denotationally, we have to move away from finite-dimensional quantum
computing:

® E.g. the recursive domain equation X = C® X cannot be solved in finite dimensions.

® But it can be solved in infinite dimensions: take X = @ C.

Naturally, we use (infinite-dimensional) W*-algebras (aka von Neumann algebras),
which were introduced by von Neumann to aid his study of quantum mechanics.

4/30

Outline : Causality and Linear vs Affine Type Systems

Linear type system : only non-linear variables may be copied or discarded.

Affine type system : only non-linear variables may be copied; all variables may be
discarded.

Syntactically, all types have an elimination rule in quantum programming.
Operationally, all computational data may be discarded by a mix of partial trace
and classical discarding.

Denotationally, we can construct discarding maps at all types (quantum and
classical) and prove the interpretation of the values is causal.

® This is achieved by considering different kinds of structure-preserving superoperators.

The "no deletion" theorem of QM is irrelevant for quantum programming. We
work entirely within W*-algebras, so no violation of QM.

5/30

QPL - a Quantum Programming Language

As a basis for our development, we describe a quantum programming language
based on the language QPL of Selinger (which is also affine).

The language is equipped with a type system which guarantees no runtime errors
can occur.

QPL is not a higher-order language: it has procedures, but does not have lambda
abstractions.

We extend QPL with :

® Inductive datatypes.
® Copy operation on classical types.

6/30

Syntax

® The syntax (excerpt) of our language is presented below. The formation rules are
omitted. Notice there is no | modality.

Type Var. X, Y, Z

Term Var. x,q,b,u

Procedure Var. f.g

Types A B = X|/|qgbit| A+ B|A®B | uX.A
Classical Types P,R = X|I|P+R|P®R|uX.P
Variable contexts I, X = x3:A1L, ..., X A

Procedure cont. I = f:AL—>Bi,....f,: A, — B,

7/30

Some Definable Types

® The type of bits is defined as bit :=/ + /.
® The type of natural numbers is defined as Nat := uX./ + X.
® The type of lists of qubits is defined as QList = uX./ + gbit ® X.

8/30

Syntax (contd.)

Terms M,N := new unit u | new gbit g | discard x | y = copy x
qi,.--,qnx=U]| M;N | skip |
b = measure q | while b do M |
x = lefty gM | x = right, gM |
case y of {left x; — M | right x, — N}
x = (x1,%) | (x1, %) = x |
y = fold x | y = unfold x |
proc f x:A—y:B{M} |y="f(x)

e A term judgement is of the form N+ (I') P (¥X), where all types are closed and all
contexts are well-formed. It states that the term is well-formed in procedure
context [1, given input variables (I') and output variables (¥).

® A program is a term P, such that -+ (-) P ('), for some (unique) I

9/30

Syntax : qubits

The type of bits is (canonically) defined to be bit .=/ + /.

bi
M (T) new gbit q (', q : gbit) (gbit)

I_I l_ <r, q . qbit> b — measure q <r’ b : bit> (measure)

S is a unitary of arity n
MEA(T,qu:qbit,... g, :gbit) g1,..., 9, *= S (I, q1: qbit, ..., g, : gbit)

(unitary)

10/30

Syntax : copying

P is a classical type

N-(T,x:P)y=copy x ([,x:P,y:P) (copy)

11/30

Syntax : discarding (affine vs linear)

® |f we wish to have a linear type system:

T (Tx 1) discard x () (aiscard)

e |f we wish to have an affine type system:

T (Fox A discard x (1) (diseard)

® Since all types have an elimination rule, an affine type system is obviously more
convenient.

12/30

Operational Semantics

e QOperational semantics is a formal specification which describes how a program is
executed in a mathematically precise way.

® A configuration is a tuple (M, V,Q, p), where:

® M is a well-formed term M= (I') M (X).

® V is a value assignment. Each input variable of M is assigned a value, e.g.

V = {x = zero, y = cons(one, nil)}.

® Qis a procedure store. It keeps track of the defined procedures by mapping
procedure variables to their procedure bodies (which are terms).
p is the (possibly not normalized) density matrix computed so far.
This data is subject to additional well-formedness conditions (omitted).

13/30

Operational Semantics (contd.)

Program execution is (formally) modelled as a nondeterministic reduction relation
on configurations (M, V,Q, p) ~ (M, V', Q. p').

The reduction relation may equivalently be seen as probabilistic, because the
probability of the reduction is encoded in p'.

The probability of the above reduction is then tr(p’)/tr(p), which is consistent
with the Born rule of quantum mechanics.

The only source of probabilistic behaviour is given by quantum measurements.

14/30

A simple program and its execution graph

while b do {
new gbit q;
q *= H;
discard b;
b = measure q

(M|b=1tt] - |1)

o N
(M|b=tt| - |05) (skip|b=£f] - |0.5)
o N
(M|b=tt| - |025) (skip|b=ff]| - |0.25)
o w*
' (skip | b=££ | - | 0.125)

15/30

A simple program for GHZ,

proc GHZnext(l : ListQ) -> 1 : ListQ {

new gbit q;
case 1 of
nil -> q *= H;
1 =gq ::nil
| @ :: 17 -> q’,q *= CNOT;
l=q::q ::1°
+

proc GHZ(n : Nat) -> 1 : ListQ {
case n of
zero -> 1 = nil
| s(n’) -> 1 = GHZnext(GHZ(n’))

16 /30

An example execution

(1 = GHZ(n) | n=s(s(s(zero0))) | Q2| 1)
§

(1 = GHZnext(1) |1=2:1:nil | Q| y2)

(new gbit q;--~|li2::1::nil|Q|72)
(case 1 of --- |1:2::1Eni1,q:3|§2|72®0>(O|)
(@7, *=CNOT;--- [1° =1:nil,q=3,9’ =2 | Q | % ®0) (0])
1=q:: q :: 1’1’—21::nil,q—3,q’—2Q’y3)

(skip|1:3::2?:1::nil\9\73)

17/30

The Denotational Model

Our denotational model is based on W*-algebras (aka von Neumann algebras).

A W*-algebra is a complex vector space A, equipped with:
® A bilinear multiplication (—- —): A x A — A (written as juxtaposition).
® A submultiplicative norm || — || : A = Rxq, i.e. Vx,¥y € A |Ixy| < [Ixlll¥]-

® An involution (—)* : A — A such that (x*)* = x, (x + y)* = (x* + y*),
(xy)* = y*x* and (Ax)* = Ax*.
® Subject to some additional conditions (omitted here).

Example: The set of complex numbers C.

Example: The algebra M,(C) of n x n complex matrices.

18/30

The Denotational Model (contd.)

We need to consider two kinds of structure-preserving linear maps.

A linear map f : A — B is MIU, if it preserves multiplication, involution and the
unit. These maps are known as *-homomorphisms.

A linear map f : A — B is CPSU, if it is completely-positive and subunital
(0<f(1) <1).
Every MIU map is also CPSU.

Values are interpreted as MIU-maps, whereas computations are interpreted as
CPSU-maps.

19/30

Categorical Structure of W*-algebras

Let Wipgy be the category of W*-algebras and CPSU-maps.

Let W}y, be the category of W*-algebras and MIU-maps.
For the denotational semantics, we have to adopt the Heisenberg picture of
quantum mechanics:

® Categorically, this means our interpretations live in the opposite categories.
® Values are interpreted as morphisms in V := (Wy,,,)°P.
® Computations are interpreted as morphisms in C := (W¢pg)°P.

Both C and V are symmetric monoidal and have small coproducts.
C is also pointed and DCPO | ;-enriched.

There exist symmetric monoidal adjunctions

] J
V L C
R

Set

O™

20/30

Interpretation of Types

The category V is also symmetric monoidal closed and cocomplete, which is ideal
for the interpretation of inductive datatypes.

Inductive datatypes are interpreted by constructing (parameterised) initial algebras
within V.

Every open type © I A is interpreted as an w-cocontinuous functor
[OoF A : Vel - v,

Every closed type A is interpreted as an object [A] € Ob(V) = Ob(C).

21/30

Copying of Classical Information

® We do not use linear logic based approaches that rely on a !-modality.
® Instead, we use techniques based on recent work [LMZ19]:
® Abstract categorical models for linear/non-linear recursive types (! and —o allowed).
® Implicit copying and discarding for non-linear recursive types (difficult to model
denotationally).
® New methods for solving recursive domain equations.
® New coherence properties for parameterised initial algebras.
¢ Extended version of [LMZ19] submitted to LMCS (60 pages). arXiv:1906.09503
[]

The present treatment is actually a simple special case of [LMZ19], because here
we do not use ! or —o.

[LMZ19] Bert Lindenhovius, Michael Mislove and Vladimir Zamdzhiev. Mixed Linear and
Non-linear Recursive Types. ICFP'19.
22/30

Copying of Classical Information (contd.)

® For every classical type © - P we present a classical interpretation
(© F P) : Set!® — Set which we show satisfies

o
Setl®! _Fxler viel

(©F P) = [©F P]

_
Set 3 Vv

23/30

Copying of Classical Information (contd.)

® For every classical type © - P we present a classical interpretation
(© F P) : Set!® — Set which we show satisfies

o
Setl®! _Fxlel viel

(©F P) = [©F P]

_
Set 3 Vv

® For closed types we get an isomorphism F(P)) = [P].

23/30

Copying of Classical Information (contd.)

® For every classical type © - P we present a classical interpretation
(© F P) : Set!® — Set which we show satisfies

o
Setl®! _Fxler viel

(©F P) = [©F P]

_
Set 3 Vv

® For closed types we get an isomorphism F(P)) = [P].

® This isomorphism allows us to define a cocommutative comonoid structure.

23/30

Copying of Classical Information (contd.)

® For every classical type © - P we present a classical interpretation
(© F P) : Set!® — Set which we show satisfies

o
Setl®! _Fxler viel

©FP) = [©F P

_
Set 3 V

® For closed types we get an isomorphism F(P) = [P].
® This isomorphism allows us to define a cocommutative comonoid structure.

¢ The classical values (including folds) are then comonoid homomorhpisms.

23/30

Discarding of (Quantum) Information

® Discardable operations are called causal.

® |n V, the tensor unit / is terminal, so the discarding map is o4 : A — I.
® \We show that all values are *-homomorphisms and therefore causal.
® This includes folds, because type interpretation is done in V.

24 /30

Interpretation of Terms and Configurations

Most of the difficulty is in defining the interpretation of types and the
substructural operations.

Terms are interpreted as Scott-continuous functions

[N M O] - [N — C(r], [£]).

Configurations are interpreted as states [(M, V,Q,p)] : | — [X].
This is fairly straightforward.

25 /30

Soundness

Theorem (Soundness)

For any non-terminal configuration C, the denotational interpretation is invariant under
(small-step) program execution:

[c1=>" [P]

C~D

Remark: The above sum is convex.
26 /30

Invariance w.r.t big-step reduction

e Can the interpretation of a configuration be recovered from the (potentially
infinite) set of its terminal reducts?

Theorem (Big-step invariance)

For any configuration C :

CyT

T terminal

® This is a novel result for quantum programming.
® This is a strong result, because it immediately implies computational adequacy.

e Useful for a collecting semantics for quantum (relational) program logics.

27/30

Computational Adequacy

e Can we provide a denotational formulation for the probability of termination?

Theorem (Computational Adequacy)
For any normalised configuration C :

(¢o[C]) (1) = Halt(C)

28 /30

Conclusion and Future Work

We described a natural model based on (infinite-dimensional) W*-algebras.

Use affine type systems instead of linear ones for quantum programming.
Novel results for quantum programming:
® |nductive datatypes.
® |nvariance of the interpretation w.r.t big-step reduction. This implies computational
adequacy at all types.
No -modality:
® Comonoid structure of all classical types using the categorical structure of models of
intuitionistic linear logic.
® Causal (discarding) structure by separating the values and computations into
suitable categories.

Do lambda abstractions in quantum programming admit a physical interpretation?
Future work: use the model for abstract interpretation.

20/30

Thank you for your attention!

30/30

