The ZX-calculus is incomplete for quantum mechanics

Christian Schröder de Witt ${ }^{1}$ Vladimir Zamdzhiev ${ }^{2}$

${ }^{1}$ Scherenbergstr. 22, 10439 Berlin
${ }^{2}$ Department of Computer Science, University of Oxford

5 June 2014

ZX-calculus

- Introduced by Coecke and Duncan in 2008

ZX-calculus

- Introduced by Coecke and Duncan in 2008
- Diagramatic logical calculus for studying quantum information processing

ZX-calculus

- Introduced by Coecke and Duncan in 2008
- Diagramatic logical calculus for studying quantum information processing
- Can be used as an alternative to traditional Hilbert space formalism

ZX-calculus

- Introduced by Coecke and Duncan in 2008
- Diagramatic logical calculus for studying quantum information processing
- Can be used as an alternative to traditional Hilbert space formalism
- Has been used to study:
- Quantum algorithms
- Quantum security protocols
- Quantum error-correcting codes
- and other problems involving quantum information

Atomic Diagrams (1)

$$
\begin{aligned}
& \llbracket \|=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=1 \llbracket \quad \llbracket=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\sigma \\
& \llbracket \rrbracket=\langle 00|+\langle 11| \llbracket \downarrow=|00\rangle+|11\rangle \\
& \text { | }
\end{aligned}
$$

Atomic Diagrams (2)

$$
\|= \begin{cases}\left|0^{m}\right\rangle & \mapsto\left|0^{n}\right\rangle \\ \left|1^{m}\right\rangle & \mapsto e^{i \alpha}\left|1^{n}\right\rangle \\ \text { rest } & \mapsto 0\end{cases}
$$

$\|= \begin{cases}\left|+^{m}\right\rangle & \mapsto\left|+{ }^{n}\right\rangle \\ \left|-{ }^{m}\right\rangle & \mapsto e^{i \alpha}\left|-{ }^{n}\right\rangle \\ \text { rest } & \mapsto 0\end{cases}$
where $\alpha \in[0,2 \pi)$

Compound Diagrams

then

and

$\|=D_{1} \circ D_{2}$

Examples

$$
\begin{array}{cc}
\llbracket|\rrbracket=\sqrt{2}| 0\rangle & \llbracket|\emptyset \rrbracket=\sqrt{2}| 1\rangle \\
\llbracket \bigcirc \rrbracket=\sqrt{2}|+\rangle & \llbracket|\emptyset \rrbracket=\sqrt{2}|-\rangle \\
\llbracket \phi \rrbracket=z & \llbracket \phi \rrbracket=x \\
\llbracket \phi-\emptyset \rrbracket=\text { CNOT }
\end{array}
$$

Axioms (1)

"Only the topology matters"

Example

Axioms (2)

Axioms (3)

Axioms (4)

Axioms (5)

Axioms(6)

Example derivation

$$
=0-b=0
$$

Soundness, Completeness and Universality results

- The ZX-calculus is sound

Soundness, Completeness and Universality results

- The ZX-calculus is sound
- $Z X \vdash D_{1}=D_{2} \Longrightarrow \llbracket D_{1} \rrbracket=e^{i \phi} \llbracket D_{2} \rrbracket$

Soundness, Completeness and Universality results

- The ZX-calculus is sound
- $Z X \vdash D_{1}=D_{2} \Longrightarrow \llbracket D_{1} \rrbracket=e^{i \phi} \llbracket D_{2} \rrbracket$
- The $Z X$-calculus is universal

Soundness, Completeness and Universality results

- The ZX-calculus is sound
- $Z X \vdash D_{1}=D_{2} \Longrightarrow \llbracket D_{1} \rrbracket=e^{i \phi} \llbracket D_{2} \rrbracket$
- The $Z X$-calculus is universal
- $\forall U: \mathcal{Q}^{n} \rightarrow \mathcal{Q}^{m}, \exists D . \llbracket D \rrbracket=U$

Soundness, Completeness and Universality results

- The ZX-calculus is sound
- $Z X \vdash D_{1}=D_{2} \Longrightarrow \llbracket D_{1} \rrbracket=e^{i \phi} \llbracket D_{2} \rrbracket$
- The $Z X$-calculus is universal
- $\forall U: \mathcal{Q}^{n} \rightarrow \mathcal{Q}^{m}, \exists D . \llbracket D \rrbracket=U$
- Completeness of ZX (with the Euler decomposition of the Hadamard gate rule) was unknown.

Soundness, Completeness and Universality results

- The ZX-calculus is sound
- $Z X \vdash D_{1}=D_{2} \Longrightarrow \llbracket D_{1} \rrbracket=e^{i \phi} \llbracket D_{2} \rrbracket$
- The $Z X$-calculus is universal
- $\forall U: \mathcal{Q}^{n} \rightarrow \mathcal{Q}^{m}, \exists D \cdot \llbracket D \rrbracket=U$
- Completeness of ZX (with the Euler decomposition of the Hadamard gate rule) was unknown.
- $\llbracket D_{1} \rrbracket=\llbracket D_{2} \rrbracket \Longrightarrow Z X \vdash D_{1}=D_{2}$

Soundness, Completeness and Universality results

- The ZX-calculus is sound
- $Z X \vdash D_{1}=D_{2} \Longrightarrow \llbracket D_{1} \rrbracket=e^{i \phi} \llbracket D_{2} \rrbracket$
- The $Z X$-calculus is universal
- $\forall U: \mathcal{Q}^{n} \rightarrow \mathcal{Q}^{m}, \exists D \cdot \llbracket D \rrbracket=U$
- Completeness of ZX (with the Euler decomposition of the Hadamard gate rule) was unknown.
- $\llbracket D_{1} \rrbracket=\llbracket D_{2} \rrbracket \Longrightarrow Z X \vdash D_{1}=D_{2}$
- The ZX -calculus is complete for stabilizer quantum mechanics

Soundness, Completeness and Universality results

- The ZX -calculus is sound
- $Z X \vdash D_{1}=D_{2} \Longrightarrow \llbracket D_{1} \rrbracket=e^{i \phi} \llbracket D_{2} \rrbracket$
- The $Z X$-calculus is universal
- $\forall U: \mathcal{Q}^{n} \rightarrow \mathcal{Q}^{m}, \exists D \cdot \llbracket D \rrbracket=U$
- Completeness of ZX (with the Euler decomposition of the Hadamard gate rule) was unknown.
- $\llbracket D_{1} \rrbracket=\llbracket D_{2} \rrbracket \Longrightarrow Z X \vdash D_{1}=D_{2}$
- The $Z X$-calculus is complete for stabilizer quantum mechanics
- If D_{1} and D_{2} are ZX-SQM diagrams and $\llbracket D_{1} \rrbracket=\llbracket D_{2} \rrbracket$ then $Z X \vdash D_{1}=D_{2}$

Euler Decomposition

Recall that for single-qubit unitary maps:

where $\alpha_{i}, \beta_{i}, \gamma_{i}, \phi_{i} \in[0,2 \pi)$

Alternative Models

Consider the following models:

These models are sound when $k=4 p+1$ for $p \in \mathbb{Z}$.

Counter-example diagrams

Counter-example diagrams (cont.)

where

$$
\begin{aligned}
& \alpha:=-\arccos \left(\frac{5}{2 \sqrt{13}}\right) \approx 0.2561 \pi \\
& \beta:=-2 \arcsin \left(\frac{\sqrt{3}}{4}\right) \approx-0.2851 \pi \\
& \phi:=\arcsin \left(\frac{\sqrt{3}}{4}\right)-\alpha \approx 0.3987 \pi
\end{aligned}
$$

Incomplete

We have:

$$
\llbracket D_{1} \rrbracket=\llbracket D_{2} \rrbracket
$$

but for any $\lambda \in \mathbb{C}$:

$$
\llbracket D_{1} \rrbracket_{-3} \neq \lambda \llbracket D_{2} \rrbracket_{-3}
$$

However, $\llbracket \cdot \rrbracket_{-3}$ is a sound model of $Z X$, so

$$
Z X \nvdash D 1=D 2
$$

and therefore the ZX -calculus is incomplete for quantum mechanics.

ZX is incomplete, what next?

- Nothing special about counter-example, others easily doable using the same approach

ZX is incomplete, what next?

- Nothing special about counter-example, others easily doable using the same approach
- Color-swap rule might be needed for completeness

ZX is incomplete, what next?

- Nothing special about counter-example, others easily doable using the same approach
- Color-swap rule might be needed for completeness

where

$$
\begin{array}{rll}
\alpha_{2}:=f_{1}\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right) & ; & f_{1}=? \\
\beta_{2}:=f_{2}\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right) & ; & f_{2}=? \\
\gamma_{2}:=f_{3}\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right) & ; & f_{3}=?
\end{array}
$$

Even then, more challenges

Approximate completeness instead?

- Restrict generators, drop universality and work towards approximate completeness

Approximate completeness instead?

- Restrict generators, drop universality and work towards approximate completeness
- If diagram angles are of the form $\frac{k \pi}{2}$ (Stabilizer QM):

Approximate completeness instead?

- Restrict generators, drop universality and work towards approximate completeness
- If diagram angles are of the form $\frac{k \pi}{2}$ (Stabilizer QM):
- completeness holds

Approximate completeness instead?

- Restrict generators, drop universality and work towards approximate completeness
- If diagram angles are of the form $\frac{k \pi}{2}$ (Stabilizer QM):
- completeness holds
- calculus is not even approximately universal

Approximate completeness instead?

- Restrict generators, drop universality and work towards approximate completeness
- If diagram angles are of the form $\frac{k \pi}{2}$ (Stabilizer QM):
- completeness holds
- calculus is not even approximately universal
- If diagram angles are of the form $\frac{k \pi}{4}$ (Clifford+ T):

Approximate completeness instead?

- Restrict generators, drop universality and work towards approximate completeness
- If diagram angles are of the form $\frac{k \pi}{2}$ (Stabilizer QM):
- completeness holds
- calculus is not even approximately universal
- If diagram angles are of the form $\frac{k \pi}{4}$ (Clifford+ T):
- calculus is approximately universal

Approximate completeness instead?

- Restrict generators, drop universality and work towards approximate completeness
- If diagram angles are of the form $\frac{k \pi}{2}$ (Stabilizer QM):
- completeness holds
- calculus is not even approximately universal
- If diagram angles are of the form $\frac{k \pi}{4}$ (Clifford $+T$):
- calculus is approximately universal
- calculus is complete for line-graphs (next talk)

Approximate completeness instead?

- Restrict generators, drop universality and work towards approximate completeness
- If diagram angles are of the form $\frac{k \pi}{2}$ (Stabilizer QM):
- completeness holds
- calculus is not even approximately universal
- If diagram angles are of the form $\frac{k \pi}{4}$ (Clifford+ T):
- calculus is approximately universal
- calculus is complete for line-graphs (next talk)
- completeness is unknown

